A293024
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(exp(x) - Sum_{i=0..k} x^i/i!).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 5, 1, 0, 0, 1, 15, 1, 0, 0, 1, 4, 52, 1, 0, 0, 0, 1, 11, 203, 1, 0, 0, 0, 1, 1, 41, 877, 1, 0, 0, 0, 0, 1, 11, 162, 4140, 1, 0, 0, 0, 0, 1, 1, 36, 715, 21147, 1, 0, 0, 0, 0, 0, 1, 1, 92, 3425, 115975, 1, 0, 0, 0, 0, 0, 1, 1, 36, 491, 17722, 678570
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 0, 0, 0, 0, 0, ...
15, 4, 1, 1, 0, 0, 0, 0, ...
52, 11, 1, 1, 1, 0, 0, 0, ...
203, 41, 11, 1, 1, 1, 0, 0, ...
877, 162, 36, 1, 1, 1, 1, 0, ...
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(n-j, k)*binomial(n-1, j-1), j=1+k..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Sep 28 2017
-
A[0, _] = 1;
A[n_, k_] /; 0 <= k <= n := A[n, k] = Sum[A[n-j, k] Binomial[n-1, j-1], {j, k+1, n}];
A[, ] = 0;
Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
ary = [1]
(1..n).each{|i| ary << (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}}
ary
end
def A293024(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A293024(20)
A293049
Expansion of e.g.f. exp(x^3/(1 - x)).
Original entry on oeis.org
1, 0, 0, 6, 24, 120, 1080, 10080, 100800, 1149120, 14515200, 199584000, 2973801600, 47740492800, 820928908800, 15049152518400, 292919058432000, 6031865968128000, 130990787582054400, 2991455760887193600, 71659101232502784000, 1796424431562528768000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*j!, j=3..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 30 2017
seq(factorial(k)*coeftayl(exp(x^3/(1-x)), x = 0, k),k=0..50); # Muniru A Asiru, Oct 09 2017
-
CoefficientList[Series[E^(x^3/(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2017 *)
-
x='x+O('x^66); Vec(serlaplace(exp(x^3/(1-x))))
A293119
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. Product_{i>k} exp(-x^i).
Original entry on oeis.org
1, 1, -1, 1, 0, -1, 1, 0, -2, -1, 1, 0, 0, -6, 1, 1, 0, 0, -6, -12, 19, 1, 0, 0, 0, -24, 0, 151, 1, 0, 0, 0, -24, -120, 240, 1091, 1, 0, 0, 0, 0, -120, -360, 2520, 7841, 1, 0, 0, 0, 0, -120, -720, 0, 21840, 56519, 1, 0, 0, 0, 0, 0, -720, -5040, 20160, 181440, 396271
Offset: 0
Square array begins:
1, 1, 1, 1, ...
-1, 0, 0, 0, ...
-1, -2, 0, 0, ...
-1, -6, -6, 0, ...
1, -12, -24, -24, ...
19, 0, -120, -120, ...
-
A:= proc(n, k) option remember; `if`(n=0, 1, -add(
A(n-j, k)*binomial(n-1, j-1)*j!, j=1+k..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 30 2017
-
A[0, _] = 1;
A[n_, k_] /; 0 <= k <= n := A[n, k] = -Sum[A[n-j, k] Binomial[n-1, j-1] j!, {j, k+1, n}];
A[, ] = 0;
Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
A293134
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-x^(k+1)/(1+x)).
Original entry on oeis.org
1, 1, -1, 1, 0, 3, 1, 0, -2, -13, 1, 0, 0, 6, 73, 1, 0, 0, -6, -12, -501, 1, 0, 0, 0, 24, 0, 4051, 1, 0, 0, 0, -24, -120, 240, -37633, 1, 0, 0, 0, 0, 120, 1080, -2520, 394353, 1, 0, 0, 0, 0, -120, -720, -10080, 21840, -4596553, 1, 0, 0, 0, 0, 0, 720, 5040, 100800
Offset: 0
Square array begins:
1, 1, 1, 1, ...
-1, 0, 0, 0, ...
3, -2, 0, 0, ...
-13, 6, -6, 0, ...
73, -12, 24, -24, ...
-501, 0, -120, 120, ...
A293050
Expansion of e.g.f. exp(x^4/(1 - x)).
Original entry on oeis.org
1, 0, 0, 0, 24, 120, 720, 5040, 60480, 725760, 9072000, 119750400, 1756339200, 28021593600, 479480601600, 8717829120000, 168254102016000, 3438311804928000, 74160828758016000, 1682757222322176000, 40061786401308672000, 998402161605488640000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*j!, j=4..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 29 2017
-
a[n_] := a[n] = If[n==0, 1, Sum[a[n-j] Binomial[n-1, j-1] j!, {j, 4, n}]];
a /@ Range[0, 23] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
-
x='x+O('x^66); Vec(serlaplace(exp(x^4/(1-x))))
A293133
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x^(k+1)/(1+x)).
Original entry on oeis.org
1, 1, 1, 1, 0, -1, 1, 0, 2, 1, 1, 0, 0, -6, 1, 1, 0, 0, 6, 36, -19, 1, 0, 0, 0, -24, -240, 151, 1, 0, 0, 0, 24, 120, 1920, -1091, 1, 0, 0, 0, 0, -120, -360, -17640, 7841, 1, 0, 0, 0, 0, 120, 720, 0, 183120, -56519, 1, 0, 0, 0, 0, 0, -720, -5040, 20160, -2116800
Offset: 0
Square array begins:
1, 1, 1, 1, ...
1, 0, 0, 0, ...
-1, 2, 0, 0, ...
1, -6, 6, 0, ...
1, 36, -24, 24, ...
-19, -240, 120, -120, ...
-
def f(n)
return 1 if n < 2
(1..n).inject(:*)
end
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
ary = [1]
(1..n).each{|i| ary << (-1) ** (k % 2) * (k..i - 1).inject(0){|s, j| s + (-1) ** (j % 2) * f(j + 1) * ncr(i - 1, j) * ary[i - 1 - j]}}
ary
end
def A293133(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A293133(20)
Showing 1-6 of 6 results.
Comments