cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A293049 Expansion of e.g.f. exp(x^3/(1 - x)).

Original entry on oeis.org

1, 0, 0, 6, 24, 120, 1080, 10080, 100800, 1149120, 14515200, 199584000, 2973801600, 47740492800, 820928908800, 15049152518400, 292919058432000, 6031865968128000, 130990787582054400, 2991455760887193600, 71659101232502784000, 1796424431562528768000
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2017

Keywords

Comments

For n > 4, a(n) is a multiple of 10. - Muniru A Asiru, Oct 09 2017

Crossrefs

Column k=2 of A293053.
E.g.f.: Product_{i>k} exp(x^i): A000262 (k=0), A052845 (k=1), this sequence (k=2), A293050 (k=3).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*j!, j=3..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 30 2017
    seq(factorial(k)*coeftayl(exp(x^3/(1-x)), x = 0, k),k=0..50); # Muniru A Asiru, Oct 09 2017
  • Mathematica
    CoefficientList[Series[E^(x^3/(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2017 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x^3/(1-x))))

Formula

E.g.f.: Product_{i>2} exp(x^i).
a(n) ~ n^(n-1/4) * exp(-5/2 + 2*sqrt(n) - n) / sqrt(2). - Vaclav Kotesovec, Sep 30 2017
a(n) = 2*(n-1) * a(n-1) - (n-1)*(n-2) * a(n-2) + 6*binomial(n-1,2) * a(n-3) - 12*binomial(n-1,3) * a(n-4) for n > 3. - Seiichi Manyama, Mar 15 2023
From Seiichi Manyama, Jun 17 2024: (Start)
a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n-2*k-1,n-3*k)/k!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=3..n} k * a(n-k)/(n-k)!. (End)

A293053 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. Product_{i>k} exp(x^i).

Original entry on oeis.org

1, 1, 1, 1, 0, 3, 1, 0, 2, 13, 1, 0, 0, 6, 73, 1, 0, 0, 6, 36, 501, 1, 0, 0, 0, 24, 240, 4051, 1, 0, 0, 0, 24, 120, 1920, 37633, 1, 0, 0, 0, 0, 120, 1080, 17640, 394353, 1, 0, 0, 0, 0, 120, 720, 10080, 183120, 4596553, 1, 0, 0, 0, 0, 0, 720, 5040, 100800, 2116800, 58941091
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2017

Keywords

Examples

			Square array begins:
    1,   1,   1,   1, ...
    1,   0,   0,   0, ...
    3,   2,   0,   0, ...
   13,   6,   6,   0, ...
   73,  36,  24,  24, ...
  501, 240, 120, 120, ...
		

Crossrefs

Columns k=0..3 give A000262, A052845, A293049, A293050.
Rows n=0..1 give A000012, A000007.
Main diagonal gives A000007.
A(n,n-1) gives A000142(n).

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(n-j, k)*binomial(n-1, j-1)*j!, j=1+k..n))
        end:
    seq(seq(A(n,d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 29 2017
  • Mathematica
    A[0, ] = 1; A[n, k_] /; n <= k = 0; A[n_, k_] := A[n, k] = Sum[(i+1)! Binomial[n-1, i] A[n-1-i, k], {i, k, n-1}];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Nov 07 2020 *)
  • Ruby
    def f(n)
      return 1 if n < 2
      (1..n).inject(:*)
    end
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << (k..i - 1).inject(0){|s, j| s + f(j + 1) * ncr(i - 1, j) * ary[i - 1 - j]}}
      ary
    end
    def A293053(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A293053(20)

Formula

E.g.f. of column k: exp(x^(k+1)/(1-x)).
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = Sum_{i=k..n-1} (i+1)!*binomial(n-1,i)*A(n-1-i,k) for n > k.
A(n,k) = 2*(n-1) * A(n-1,k) - (n-1)*(n-2) * A(n-2,k) + (k+1)!*binomial(n-1,k) * A(n-1-k,k) - k*(k+1)!*binomial(n-1,k+1) * A(n-2-k,k) for n > k+1. - Seiichi Manyama, Mar 15 2023

A361545 Expansion of e.g.f. exp(x^4/(24 * (1-x))).

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 30, 210, 1715, 15750, 160650, 1801800, 22043175, 292116825, 4168464300, 63725161500, 1039028615625, 17998106626500, 330068683444500, 6388785205803000, 130156170633113625, 2783924007745505625, 62375052003905891250, 1460924768552182683750
Offset: 0

Views

Author

Seiichi Manyama, Mar 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{3 (-4 + n) (-3 + n) (-2 + n) (-1 + n) a[-5 + n] - 4 (-3 + n) (-2 + n) (-1 + n) a[-4 + n] + 24 (-2 + n) (-1 + n) a[-2 + n] - 48 (-1 + n) a[-1 + n] + 24 a[n] == 0, a[1] == 0, a[2] == 0, a[3] == 0, a[4] == 1, a[5] == 5}, a, {n, 0, 25}] (* Vaclav Kotesovec, Aug 28 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^4/(24*(1-x)))))

Formula

a(n) = 2*(n-1) * a(n-1) - (n-1)*(n-2) * a(n-2) + binomial(n-1,3) * a(n-4) - 3*binomial(n-1,4) * a(n-5) for n > 4.
From Seiichi Manyama, Jun 17 2024: (Start)
a(n) = n! * Sum_{k=0..floor(n/4)} binomial(n-3*k-1,n-4*k)/(24^k * k!).
a(0) = 1; a(n) = ((n-1)!/24) * Sum_{k=4..n} k * a(n-k)/(n-k)!. (End)
a(n) ~ 2^(-5/4) * 3^(-1/4) * exp(-7/48 + sqrt(n/6) - n) * n^(n - 1/4). - Vaclav Kotesovec, Aug 28 2025
Showing 1-3 of 3 results.