A185369
Number of simple labeled graphs on n nodes of degree 1 or 2 without cycles.
Original entry on oeis.org
1, 0, 1, 3, 15, 90, 645, 5355, 50505, 532980, 6219045, 79469775, 1103335695, 16533226710, 265888247625, 4566885297975, 83422361847825, 1614626682669000, 33003508539026025, 710350201433547675, 16057073233633006575
Offset: 0
a(4) = 15 because there are 15 simple labeled graphs on 4 nodes of degree 1 or 2 without cycles: 1-2 3-4, 1-3 2-4, 1-4 2-3, 1-2-3-4, 1-2-4-3, 1-3-2-4, 1-3-4-2, 1-4-2-3, 1-4-3-2, 2-1-3-4, 2-1-4-3, 3-1-2-4, 3-1-4-2, 4-1-2-3, 4-1-3-2.
- Herbert S. Wilf, Generatingfunctionology, p. 104.
-
a:= proc(n) option remember;
`if`(n<2, 1-n, add(binomial(n-1, k-1) *k!/2 *a(n-k), k=2..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 24 2011
-
a=1/(2(1-x))-1/2-x/2;
Range[0,20]! CoefficientList[Series[Exp[a],{x,0,20}],x]
A361533
Expansion of e.g.f. exp(x^3/(6 * (1-x))).
Original entry on oeis.org
1, 0, 0, 1, 4, 20, 130, 980, 8400, 80920, 865200, 10164000, 130114600, 1802600800, 26867640800, 428661633400, 7288513232000, 131558835408000, 2512282795422400, 50600743739145600, 1071998968264224000, 23829055696093648000, 554524256514356128000
Offset: 0
A293050
Expansion of e.g.f. exp(x^4/(1 - x)).
Original entry on oeis.org
1, 0, 0, 0, 24, 120, 720, 5040, 60480, 725760, 9072000, 119750400, 1756339200, 28021593600, 479480601600, 8717829120000, 168254102016000, 3438311804928000, 74160828758016000, 1682757222322176000, 40061786401308672000, 998402161605488640000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*j!, j=4..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 29 2017
-
a[n_] := a[n] = If[n==0, 1, Sum[a[n-j] Binomial[n-1, j-1] j!, {j, 4, n}]];
a /@ Range[0, 23] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
-
x='x+O('x^66); Vec(serlaplace(exp(x^4/(1-x))))
A361547
Expansion of e.g.f. exp(x^5/(120 * (1-x))).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 6, 42, 336, 3024, 30366, 335412, 4041576, 52756704, 741620880, 11169844686, 179448036768, 3063069801792, 55360031126400, 1056123043335360, 21208345049147256, 447183762148547424, 9877939209960101280, 228112734232663600320
Offset: 0
-
RecurrenceTable[{4 (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) a[-6 + n] - 5 (-4 + n) (-3 + n) (-2 + n) (-1 + n) a[-5 + n] + 120 (-2 + n) (-1 + n) a[-2 + n] - 240 (-1 + n) a[-1 + n] + 120 a[n] == 0, a[1] == 0, a[2] == 0, a[3] == 0, a[4] == 0, a[5] == 1, a[6] == 6}, a, {n, 0, 25}] (* Vaclav Kotesovec, Aug 28 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^5/(120*(1-x)))))
A373758
Expansion of e.g.f. exp(x^4/(24 * (1 - x)^2)).
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 90, 840, 8435, 91980, 1089900, 13998600, 194184375, 2897744850, 46335539250, 790936146000, 14361717995625, 276491756541000, 5626652076045000, 120696581303298000, 2722068344529158625, 64392333741216731250, 1594243471325576321250
Offset: 0
-
a(n) = n!*sum(k=0, n\4, binomial(n-2*k-1, n-4*k)/(24^k*k!));
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/24*sum(j=4, i, j*(j-3)*v[i-j+1]/(i-j)!)); v;
A373759
Expansion of e.g.f. exp(x^4/(24 * (1 - x)^3)).
Original entry on oeis.org
1, 0, 0, 0, 1, 15, 180, 2100, 25235, 319410, 4299750, 61815600, 950524575, 15633092475, 274749725250, 5151569172750, 102831791687625, 2179782464359500, 48933251188321500, 1160002995644493000, 28956069155772383625, 759014081927743516875
Offset: 0
-
a(n) = n!*sum(k=0, n\4, binomial(n-k-1, n-4*k)/(24^k*k!));
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/24*sum(j=4, i, j*binomial(j-2, j-4)*v[i-j+1]/(i-j)!)); v;
Showing 1-6 of 6 results.
Comments