cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A293157 Triangle read by rows: T(n,k) = number of linear chord diagrams with n chords such that every chord has length at least k (1 <= k <= n).

Original entry on oeis.org

1, 3, 1, 15, 5, 1, 105, 36, 10, 1, 945, 329, 99, 20, 1, 10395, 3655, 1146, 292, 40, 1, 135135, 47844, 15422, 4317, 876, 80, 1, 2027025, 721315, 237135, 69862, 16924, 2628, 160, 1, 34459425, 12310199, 4106680, 1251584, 332507, 67404, 7884, 320, 1, 654729075, 234615096, 79154927, 24728326, 6944594, 1627252, 269616, 23652, 640, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 10 2017

Keywords

Comments

There is a surprising change in notation in Sullivan (2016) between Definition 1 and Table 1.
The first 11 columns are given in the reference.

Examples

			Triangle begins:
      1;
      3,    1;
     15,    5,    1;
    105,   36,   10,    1;
    945,  329,   99,   20,    1;
  10395, 3655, 1146,  292,   40,    1;
  ...
		

Crossrefs

Extensions

More terms from Alois P. Heinz, Oct 17 2017

A321311 Number of linear chord diagrams having n+2 chords and minimal chord length n.

Original entry on oeis.org

10, 26, 79, 252, 796, 2468, 7564, 23012, 69676, 210308, 633484, 1905572, 5726956, 17201348, 51645004, 155016932, 465214636, 1395971588, 4188570124, 12567021092, 37703684716, 113116297028, 339359376844, 1018099102052, 3054339249196, 9163101633668, 27489472673164
Offset: 1

Views

Author

Seiichi Manyama, Nov 17 2018

Keywords

Crossrefs

A diagonal of A293881.

Programs

  • Mathematica
    Join[{10, 26, 79}, LinearRecurrence[{5, -6}, {252, 796}, 24]] (* Jean-François Alcover, Nov 24 2018 *)
  • PARI
    Vec((10 - 24*x + 9*x^2 + 13*x^3 + 10*x^4)/((1 - 2*x)*(1 - 3*x)) + O(x^40)) \\ Andrew Howroyd, Nov 17 2018

Formula

a(n) = A293881(n+2,n).
a(n) = 5*a(n-1) - 6*a(n-2) for n > 5.
a(n) = A293156(n) - 5*2^(n-1).
G.f.: x*(10 - 24*x + 9*x^2 + 13*x^3 + 10*x^4)/((1 - 2*x)*(1 - 3*x)). - Andrew Howroyd, Nov 17 2018
2*3^4*a(n) = 2^3*73*3^n-5*3^4*2^n for n>3. - R. J. Mathar, Jan 25 2023
Showing 1-2 of 2 results.