A293227 a(n) is the number of proper divisors of n that are squarefree.
0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 7, 1, 2, 3, 3, 3, 4, 1, 3, 3, 4, 1, 7, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 8, 1, 3, 4, 2, 3, 7, 1, 4, 3, 7, 1, 4, 1, 3, 4, 4, 3, 7, 1, 4, 2, 3, 1, 8, 3, 3, 3, 4, 1, 8, 3, 4, 3, 3, 3, 4, 1, 4, 4, 4, 1, 7, 1, 4, 7
Offset: 1
Keywords
Links
Programs
-
Maple
with(numtheory): seq(coeff(series(add(mobius(k)^2*x^(2*k)/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 120); # Muniru A Asiru, Oct 28 2018
-
Mathematica
Table[Count[Most[Divisors[n]],?SquareFreeQ],{n,110}] (* _Harvey P. Dale, Jun 15 2021 *) a[n_] := 2^PrimeNu[n] - Boole[SquareFreeQ[n]]; Array[a, 100] (* Amiram Eldar, Jun 30 2022 *)
-
PARI
A293227(n) = sumdiv(n, d, (d
Formula
a(n) = Sum_{d|n, dA008966(d).
G.f.: Sum_{k>=1} mu(k)^2*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Oct 28 2018
Sum_{k=1..n} a(k) ~ (6/Pi^2)*n*(log(n) + 2*(gamma - 1 - zeta'(2)/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 01 2023