cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293235 a(n) is the sum of proper divisors of n that are square.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 5, 1, 1, 1, 21, 1, 1, 1, 14, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 21, 1, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 21, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 26, 5, 1, 1, 1, 21, 10, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 21, 1, 50, 10, 30, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 08 2017

Keywords

Comments

a(n) = 1 if and only if n > 1 is squarefree or the square of a prime. - Robert Israel, Oct 08 2017

Crossrefs

Programs

  • Maple
    A035316:= n -> mul((p[1]^(p[2]+2-(p[2] mod 2))-1)/(p[1]^2-1), p = ifactors(n)[2]):
    f:= n -> A035316(n) - `if`(issqr(n),n,0):
    map(f, [$1..100]); # Robert Israel, Oct 08 2017
  • Mathematica
    Table[Total[Select[Most[Divisors[n]],IntegerQ[Sqrt[#]]&]],{n,120}] (* Harvey P. Dale, Dec 29 2023 *)
  • PARI
    A293235(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA010052(d)*d.
a(n) = A035316(n) - (A010052(n)*n).
G.f.: Sum_{k>=1} k^2 * x^(2*k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 13 2021
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (zeta(3/2)-1)/3 = 0.537458449561... . - Amiram Eldar, Dec 01 2023