A293235 a(n) is the sum of proper divisors of n that are square.
0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 5, 1, 1, 1, 21, 1, 1, 1, 14, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 21, 1, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 21, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 26, 5, 1, 1, 1, 21, 10, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 21, 1, 50, 10, 30, 1, 1, 1, 5, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Maple
A035316:= n -> mul((p[1]^(p[2]+2-(p[2] mod 2))-1)/(p[1]^2-1), p = ifactors(n)[2]): f:= n -> A035316(n) - `if`(issqr(n),n,0): map(f, [$1..100]); # Robert Israel, Oct 08 2017
-
Mathematica
Table[Total[Select[Most[Divisors[n]],IntegerQ[Sqrt[#]]&]],{n,120}] (* Harvey P. Dale, Dec 29 2023 *)
-
PARI
A293235(n) = sumdiv(n,d,(d
Formula
a(n) = Sum_{d|n, dA010052(d)*d.
G.f.: Sum_{k>=1} k^2 * x^(2*k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 13 2021
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (zeta(3/2)-1)/3 = 0.537458449561... . - Amiram Eldar, Dec 01 2023
Comments