cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A324403 a(n) = Product_{i=1..n, j=1..n} (i^2 + j^2).

Original entry on oeis.org

1, 2, 400, 121680000, 281324160000000000, 15539794609114833408000000000000, 49933566483104048708063697937367040000000000000000, 19323883089768863178599626514889213871887405416448000000000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 26 2019

Keywords

Comments

Next term is too long to be included.

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^2+j^2, i=1..n), j=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i^2+j^2, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
  • PARI
    a(n) = prod(i=1, n, prod(j=1, n, i^2+j^2)); \\ Michel Marcus, Feb 27 2019
    
  • Python
    from math import prod, factorial
    def A324403(n): return (prod(i**2+j**2 for i in range(1,n) for j in range(i+1,n+1))*factorial(n))**2<Chai Wah Wu, Nov 22 2023

Formula

a(n) ~ 2^(n*(n+1) - 3/4) * exp(Pi*n*(n+1)/2 - 3*n^2 + Pi/12) * n^(2*n^2 - 1/2) / (Pi^(1/4) * Gamma(3/4)).
a(n) = 2*n^2*a(n-1)*Product_{i=1..n-1} (n^2 + i^2)^2. - Chai Wah Wu, Feb 26 2019
For n>0, a(n)/a(n-1) = A272244(n)^2 / (2*n^6). - Vaclav Kotesovec, Dec 02 2023
a(n) = exp(2*Integral_{x=0..oo} (n^2/(x*exp(x)) - (cosh(n*x) - cos(n*x))/(x*exp((n + 1)*x)*(cosh(x) - cos(x)))) dx)/2^(n^2). - Velin Yanev, Jun 30 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A203475 a(n) = Product_{1 <= i < j <= n} (i^2 + j^2).

Original entry on oeis.org

1, 5, 650, 5525000, 5807194900000, 1226800120038480000000, 77092420109247492627600000000000, 2001314057760220784660590245696000000000000000, 28468550112906756205383102673584071297339520000000000000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as in A203476.

Crossrefs

Programs

  • Magma
    [(&*[(&*[j^2 + k^2: k in [1..j]])/(2*j^2): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
    
  • Maple
    a:= n-> mul(mul(i^2+j^2, i=1..j-1), j=2..n):
    seq(a(n), n=1..10);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[j_]:= j^2; z = 15;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]           (* A203475 *)
    Table[v[n+1]/v[n], {n,z-1}]  (* A203476 *)
  • SageMath
    [product(product(j^2+k^2 for k in range(1,j)) for j in range(1,n+1)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023

Formula

a(n) ~ c * 2^(n^2/2) * exp(Pi*n*(n+1)/4 - 3*n^2/2 + n) * n^(n*(n-1) - 3/4), where c = A323755 = sqrt(Gamma(1/4)) * exp(Pi/24) / (2*Pi)^(9/8) = 0.274528350333552903800408993482507428142383783773190451181... - Vaclav Kotesovec, Jan 26 2019

Extensions

Name edited by Alois P. Heinz, Jul 23 2017

A264596 Let S_n be the list of the first n nonnegative numbers written in binary, with least significant bits on the left, and sorted into lexicographic order; a(n) = position of n in S_n, starting indexing at 0.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 3, 7, 1, 6, 4, 10, 3, 10, 7, 15, 1, 10, 6, 16, 4, 15, 10, 22, 3, 16, 10, 24, 7, 22, 15, 31, 1, 18, 10, 28, 6, 25, 16, 36, 4, 25, 15, 37, 10, 33, 22, 46, 3, 28, 16, 42, 10, 37, 24, 52, 7, 36, 22, 52, 15, 46, 31, 63, 1, 34, 18, 52, 10, 45, 28
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2015

Keywords

Examples

			S_0 = [0], a(0) = 0;
S_1 = [0, 1], a(1) = 1;
S_2 = [0, 01, 1], a(2) = 1;
S_3 = [0, 01, 1, 11], a(3) = 3;
S_4 = [0, 001, 01, 1, 11], a(4) = 1;
S_5 = [0, 001, 01, 1, 101, 11], a(5) = 4;
S_6 = [0, 001, 01, 011, 1, 101, 11], a(6) = 3;
S_7 = [0, 001, 01, 011, 1, 101, 11, 111], a(7) = 7;
S_8 = [0, 0001, 001, 01, 011, 1, 101, 11, 111], a(8) = 1;
...
		

Crossrefs

Suggested by John Bodeen's A263856.
Cf. A188215.

Programs

Formula

a(2^n) = 1.
a(2^n-1) = 2^n-1.
a(2n) = a(n), a(2n+1) = a(n) + n+1, a(0) = 0. - Alois P. Heinz, Nov 19 2015
Conjecture: a(n) = n*(n + 3)/2 - A007814(A293290(n)) for n > 0. - Velin Yanev, Sep 12 2017

Extensions

More terms from Alois P. Heinz, Nov 19 2015

A203511 a(n) = Product_{1 <= i < j <= n} (t(i) + t(j)); t = A000217 = triangular numbers.

Original entry on oeis.org

1, 1, 4, 252, 576576, 87178291200, 1386980110791475200, 3394352757964564324299571200, 1760578659300452732262852600316664217600, 255323290537547288382098619855584488593426606981120000
Offset: 0

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

Each term divides its successor, as in A203512.
See A093883 for a guide to related sequences.

Crossrefs

Programs

  • Maple
    t:= n-> n*(n+1)/2:
    a:= n-> mul(mul(t(i)+t(j), i=1..j-1), j=2..n):
    seq(a(n), n=0..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[j_] := j (j + 1)/2; z = 15;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    Table[v[n], {n, 1, z}]               (* A203511 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]  (* A203512 *)
    Table[Product[k*(k+1)/2 + j*(j+1)/2, {k, 1, n}, {j, 1, k-1}], {n, 0, 10}] (* Vaclav Kotesovec, Sep 07 2023 *)

Formula

a(n) ~ c * 2^n * exp(n^2*(Pi/4 - 3/2) + n*(Pi/2 + 1)) * n^(n^2 - n - 2 - Pi/8), where c = 0.2807609661547466473998991675307759198889389396430915721129636653... - Vaclav Kotesovec, Sep 07 2023

Extensions

Name edited by Alois P. Heinz, Jul 23 2017
a(0)=1 prepended by Alois P. Heinz, Jul 29 2017

A203589 Vandermonde sequence using x^2 + y^2 applied to (1,3,5,...,2n-1).

Original entry on oeis.org

1, 10, 8840, 1897064000, 192924579369600000, 15340654595434137315840000000, 1423341281300698059502838358528000000000000, 215088732628531399592688671811428988579913728000000000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 04 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    f[j_] := 2 j - 1; z = 12;
    v[n_] := Product[Product[f[j]^2 + f[k]^2, {j, 1, k - 1}], {k, 2, n}]
    Table[v[n], {n, 1, z}]          (* A203589 *)
    Table[v[n + 1]/v[n], {n, 1, z}] (* A203590 *)
    Table[Product[(2*k - 1)^2 + (2*j - 1)^2, {k, 1, n}, {j, 1, k-1}], {n, 1, 10}] (* Vaclav Kotesovec, Sep 08 2023 *)

Formula

a(n) ~ 2^(3*n^2/2 - 3*n/2 - 3/8) * n^(n*(n-1)) / exp((6 - Pi)*n^2/4 - n + Pi/48). - Vaclav Kotesovec, Sep 08 2023
Showing 1-5 of 5 results.