cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A293072 G.f.: Product_{m>0} (1-x^m+2!*x^(2*m)).

Original entry on oeis.org

1, -1, 1, 0, 0, -3, 4, -3, 4, -2, 0, -6, 9, -10, 10, -5, 10, -16, 20, -28, 22, -18, 19, -32, 54, -50, 45, -38, 44, -78, 106, -118, 96, -98, 110, -129, 192, -216, 204, -182, 213, -286, 368, -412, 366, -362, 394, -524, 676, -714, 680, -641, 742, -936, 1170
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2017

Keywords

Crossrefs

Column k=2 of A293071.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*j!*(-1)^j, j=0..min(2, n/i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 04 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1 - x^k + 2*x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 05 2017 *)
  • PARI
    Vec(prod(m=1, 80, 1-x^m+2*x^(2*m)) + O(x^80)) \\ Michel Marcus, Oct 04 2017

A293461 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*(2*i-1))).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 4, 1, 1, 0, 1, 1, 2, 4, 1, 3, 1, 0, 1, 1, 2, 4, 5, 3, 3, 1, 0, 1, 1, 2, 4, 5, 3, 6, 5, 2, 0, 1, 1, 2, 4, 5, 8, 6, 5, 6, 2, 0, 1, 1, 2, 4, 5, 8, 6, 9, 9, 4, 2, 0, 1, 1, 2, 4, 5, 8, 12, 9, 9, 13
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2017

Keywords

Examples

			Square array begins:
   1, 1, 1, 1, 1, ...
   0, 1, 1, 1, 1, ...
   0, 0, 2, 2, 2, ...
   0, 1, 1, 4, 4, ...
   0, 1, 1, 1, 5, ...
   0, 1, 3, 3, 3, ...
		

Crossrefs

Columns k=0..3 give A000007, A000700, A293304, A293463.
Rows n=0..1 give A000012, A057427.
Main diagonal gives A102186.
Cf. A290216.

Programs

  • Mathematica
    max = 12; A[n_, k_] := SeriesCoefficient[Product[(x*(-(k*x^((2*i - 1)*(k + 1) + 1)) - x^((2*i - 1)*(k + 1) + 1) + k*x^((2*i - 1)*(k + 1) + 2*i) + x^(2*i)))/(x^(2*i) - x)^2 + 1, {i, 1, max}], {x, 0, n}]; Flatten[ Table[ A[n - k, k], {n, 0, max}, {k, n, 0, -1}]] (* Jean-François Alcover, Oct 10 2017 *)

A293488 E.g.f.: Product_{m>0} (1 + x^(2*m-1) + x^(4*m-2)/2!).

Original entry on oeis.org

1, 1, 1, 6, 24, 180, 1080, 10080, 90720, 907200, 10886400, 139708800, 2035756800, 29578348800, 479480601600, 7846046208000, 146459529216000, 2845499424768000, 58421660064768000, 1246862279190528000, 28586598596075520000, 664182248232222720000
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2017

Keywords

Crossrefs

Column k=2 of A293486.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(prod(m=1, N, 1+x^(2*m-1)+x^(4*m-2)/2)))

Formula

a(n) ~ 2^(-3/4) * c^(1/4) * exp(sqrt(2*c*n) - n) * n^(n-1/4), where c = -polylog(2, -1/2 - I/2) - polylog(2, -1/2 + I/2) = 0.966945612722157030083754546059357521... - Vaclav Kotesovec, Oct 11 2017
Showing 1-3 of 3 results.