cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A028338 Triangle of coefficients in expansion of (x+1)*(x+3)*...*(x + 2n - 1) in rising powers of x.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 15, 23, 9, 1, 105, 176, 86, 16, 1, 945, 1689, 950, 230, 25, 1, 10395, 19524, 12139, 3480, 505, 36, 1, 135135, 264207, 177331, 57379, 10045, 973, 49, 1, 2027025, 4098240, 2924172, 1038016, 208054, 24640, 1708, 64, 1, 34459425, 71697105, 53809164, 20570444, 4574934, 626934, 53676, 2796, 81, 1
Offset: 0

Views

Author

Keywords

Comments

Exponential Riordan array (1/sqrt(1-2*x), log(1/sqrt(1-2*x))). - Paul Barry, May 09 2011
The o.g.f.s D(d, x) of the column sequences, for d, d >= 0,(d=0 for the main diagonal) are P(d, x)/(1 - x)^(2*d+1), with the row polynomial P(d, x) = Sum_{m=0..d} A288875(d, m)*x^m. See A288875 for details. - Wolfdieter Lang, Jul 21 2017

Examples

			G.f. for n = 4: (x + 1)*(x + 3)*(x + 5)*(x + 7) = 105 + 176*x + 86*x^2 + 16*x^3 + x^4.
The triangle T(n, k) begins:
n\k       0        1        2        3       4      5     6    7  8  9
0:        1
1:        1        1
2:        3        4        1
3:       15       23        9        1
4:      105      176       86       16       1
5:      945     1689      950      230      25      1
6:    10395    19524    12139     3480     505     36     1
7:   135135   264207   177331    57379   10045    973    49    1
8:  2027025  4098240  2924172  1038016  208054  24640  1708   64  1
9: 34459425 71697105 53809164 20570444 4574934 626934 53676 2796 81  1
...
row n = 10: 654729075 1396704420 1094071221 444647600 107494190 16486680 1646778 106800 4335 100 1.
...  reformatted and extended. - _Wolfdieter Lang_, May 09 2017
O.g.f.s of diagonals d >= 0: D(2, x) = (3 + 8*x + x^2)/(1 - x)^5 generating [3, 23, 86, ...] = A024196(n+1), from the row d=2 entries of A288875 [3, 8, 1]. - _Wolfdieter Lang_, Jul 21 2017
Boas-Buck recurrence for column k=2 and n=4: T(4, 2) = (4!/2)*(2*(1+4*(5/12))*T(2,2)/2! + 1*(1 + 4*(1/2))*T(3,2)/3!) = (4!/2)*(8/3*1 + 3*9/3!) = 86. - _Wolfdieter Lang_, Aug 11 2017
		

Crossrefs

A039757 is signed version.
Row sums: A000165.
Diagonals: A000012, A000290(n+1), A024196(n+1), A024197(n+1), A024198(n+1).
A161198 is a scaled triangle version and A109692 is a transposed triangle version.
Central terms: A293318.
Cf. A286718, A002208(n+1)/A002209(n+1).

Programs

  • Maple
    nmax:=8; for n from 0 to nmax do a(n, 0) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, n) := 1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := (2*n-1)*a(n-1, m) + a(n-1, m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
  • Mathematica
    T[n_, k_] := Sum[(-2)^(n-i) Binomial[i, k] StirlingS1[n, i], {i, k, n}] (* Woodhouse *)
    Join[{1},Flatten[Table[CoefficientList[Expand[Times@@Table[x+i,{i,1,2n+1,2}]],x],{n,0,10}]]] (* Harvey P. Dale, Jan 29 2013 *)

Formula

Triangle T(n, k), read by rows, given by [1, 2, 3, 4, 5, 6, 7, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 20 2005
T(n, k) = Sum_{i=k..n} (-2)^(n-i) * binomial(i, k) * s(n, i) where s(n, k) are signed Stirling numbers of the first kind. - Francis Woodhouse (fwoodhouse(AT)gmail.com), Nov 18 2005
G.f. of row polynomials in y: 1/(1-(x+x*y)/(1-2*x/(1-(3*x+x*y)/(1-4*x/(1-(5*x+x*y)/(1-6*x*y/(1-... (continued fraction). - Paul Barry, Feb 07 2009
T(n, m) = (2*n-1)*T(n-1,m) + T(n-1,m-1) with T(n, 0) = (2*n-1)!! and T(n, n) = 1. - Johannes W. Meijer, Jun 08 2009
From Wolfdieter Lang, May 09 2017: (Start)
E.g.f. of row polynomials in y: (1/sqrt(1-2*x))*exp(-y*log(sqrt(1-2*x))) = exp(-(1+y)*log(sqrt(1-2*x))) = 1/sqrt(1-2*x)^(1+y).
E.g.f. of column m sequence: (1/sqrt(1-2*x))* (-log(sqrt(1-2*x)))^m/m!. For the special Sheffer, also known as exponential Riordan array, see a comment above. (End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 2^(n-1-p)*(1 + 2*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 09 2017

A109692 Triangle of coefficients in expansion of (1+x)*(1+3x)*(1+5x)*(1+7x)*...*(1+(2n-1)x).

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 9, 23, 15, 1, 16, 86, 176, 105, 1, 25, 230, 950, 1689, 945, 1, 36, 505, 3480, 12139, 19524, 10395, 1, 49, 973, 10045, 57379, 177331, 264207, 135135, 1, 64, 1708, 24640, 208054, 1038016, 2924172, 4098240, 2027025
Offset: 0

Views

Author

Philippe Deléham, Aug 08 2005

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, 9, ...] where DELTA is the operator defined in A084938.
T(n,k), 0 <= k <= n, is the number of elements in the Coxeter group B_n with absolute length k. - Jose Bastidas, Jul 14 2023

Examples

			Triangle T(n,k) begins:
  1;
  1,  1;
  1,  4,   3;
  1,  9,  23,   15;
  1, 16,  86,  176,   105;
  1, 25, 230,  950,  1689,   945;
  1, 36, 505, 3480, 12139, 19524, 10395;
  ...
		

Crossrefs

Cf. A039758 (signed version). A028338 transposed.
Row sums: A000165.
Central terms: A293318.
Cf. A161198 (transposed scaled triangle version).

Programs

  • Maple
    nmax:=8; mmax:=nmax: for n from 0 to nmax do a(n, n) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, 0):=1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := a(n-1,m) + (2*n-1)*a(n-1,m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012

Formula

T(n,m) = T(n-1,m) + (2*n-1)*T(n-1,m-1) with T(n,n) = (2*n-1)!! and T(n,0) = 1. - Johannes W. Meijer, Jun 08 2009

A348085 a(n) = [x^n] Product_{k=1..2*n} 1/(1 - (2*k-1) * x).

Original entry on oeis.org

1, 4, 170, 13776, 1652442, 262842580, 52116296024, 12380577235040, 3427841258566890, 1083931844930932140, 385417972804020879450, 152219732613102667656000, 66113646914860527721527960, 31319437721634527178263452656
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = polcoef(1/prod(k=1, 2*n, 1-(2*k-1)*x+x*O(x^n)), n);
    
  • PARI
    a(n) = if(n==0, 1, -sum(k=0, 2*n-1, (-1)^k*(2*k+1)^(3*n-1)*binomial(2*n-1, k))/(2^(2*n-1)*(2*n-1)!));

Formula

a(n) = A039755(3*n-1,2*n-1) for n > 0.
a(n) = (-1/(2^(2*n-1) * (2*n-1)!)) * Sum_{k=0..2*n-1} (-1)^k * (2*k+1)^(3*n-1) * binomial(2*n-1,k) for n > 0.
a(n) ~ 3^(3*n - 1/2) * n^(n - 1/2) / (sqrt(2*Pi*(1-c)) * (3 - 2*c)^n * c^(2*n - 1/2) * exp(n)), where c = -LambertW(-3*exp(-3/2)/2) = 0.62578253420128292... - Vaclav Kotesovec, Oct 02 2021
From Seiichi Manyama, May 16 2025: (Start)
a(n) = Sum_{k=0..n} 2^k * binomial(3*n-1,k+2*n-1) * Stirling2(k+2*n-1,2*n-1) for n > 0.
a(n) = Sum_{k=0..n} (-2)^k * (4*n-1)^(n-k) * binomial(3*n-1,k+2*n-1) * Stirling2(k+2*n-1,2*n-1) for n > 0. (End)

A346543 a(n) = [x^n] Product_{k=1..2*n} (x + (2*k-1)^2).

Original entry on oeis.org

1, 10, 1974, 1234948, 1601489318, 3541644282540, 11934462103156540, 56947950742822581960, 365458809637016986262790, 3035813466162156094097686300, 31694033885101849517370941522644, 406222401519003083851664224927890360, 6271146756206887832796744632163811733084
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2021

Keywords

Examples

			(1/3!) * (arcsin(x))^3 = x^3/3! + 10 * x^5/5! + ... . So a(1) =10.
(1/5!) * (arcsin(x))^5 = x^5/5! + 35 * x^7/7! + 1974 * x^9/9! + ... . So a(2) = 1974.
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(x + (2*k-1)^2), {k, 1, 2*n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2021 *)
  • PARI
    a(n) = polcoef(prod(k=1, 2*n, x+(2*k-1)^2), n);

Formula

a(n) = A008956(2*n,n).
a(n) = (4*n+1)! * [x^(4*n+1)] (1/(2*n+1)!) * (arcsin(x))^(2*n+1).
a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 121.8904568356133798202328777176879971969471503678428704459083316116687149... and c = 0.1081647814943965981694666415038643176470488612855594762896553127... - Vaclav Kotesovec, Oct 16 2021

A383704 a(n) = [x^n] Product_{k=0..2*n-1} (x - (-1)^k * (2*k+1)).

Original entry on oeis.org

1, 2, -34, -540, 26614, 805980, -66399124, -2972817848, 343902030758, 20389669252524, -3039312653124540, -224361715353976200, 40941662601331486396, 3617518823154571788440, -781104190733806836937320, -80375840650247250199417200, 20044038897159722534821833990
Offset: 0

Views

Author

Seiichi Manyama, May 06 2025

Keywords

Crossrefs

Cf. A293318.

Programs

  • Magma
    [&+[((4*n-1)^k * 4^(n-k) * Binomial(n+k,n) * StirlingFirst(2*n,n+k)): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, May 07 2025
  • Mathematica
    Table[Sum[(4*n-1)^k*4^(n-k)*Binomial[n+k,n]*StirlingS1[2*n,n+k],{k,0,n}],{n,0,17}] (* Vincenzo Librandi, May 07 2025 *)
  • PARI
    a(n) = polcoef(prod(k=0, 2*n-1, x-(-1)^k*(2*k+1)), n);
    

Formula

a(n) = Sum_{k=0..n} (-(4*n-3))^k * 4^(n-k) * binomial(n+k,n) * |Stirling1(2*n,n+k)|.
a(n) = Sum_{k=0..n} (4*n-1)^k * 4^(n-k) * binomial(n+k,n) * Stirling1(2*n,n+k).
a(n) = (2*n)! * [x^(2*n)] 1/f(x)^(4*n-3) * log(f(x))^n / n!, where f(x) = 1/(1 - 4*x)^(1/4).
Showing 1-5 of 5 results.