A293391 Integers n such that sigma(n)/phi(n) is a perfect square.
1, 14, 30, 105, 248, 264, 418, 714, 1485, 3080, 3135, 3596, 3828, 3956, 4064, 5396, 6678, 8636, 10098, 12648, 20026, 20790, 21318, 22152, 23374, 24882, 25714, 26040, 35074, 35343, 39105, 41656, 43890, 44660, 49938, 55154, 56134, 56536, 61344, 71145, 74613, 86304, 87087, 94944
Offset: 1
Keywords
Examples
sigma(14)=3*8=24, phi(14)=14*(1/2)*(6/7)=6, sigma(14)/phi(14)=2^2, so 14 is in the list.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 349 terms from Robert Israel)
- J. A. B. Dris and C. Leibovici, Why is this sequence not in the OEIS?, October 8 2017.
- ProofWiki, Integers whose ratio between sigma and phi is square, misses the second term, 14 as of Dec 2017.
Programs
-
Maple
for n from 1 to 100000 do r := numtheory[sigma](n)/numtheory[phi](n) ; if issqr(r) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 07 2017
-
Mathematica
Select[Range[10^5], IntegerQ@ Sqrt[DivisorSigma[1, #]/EulerPhi[#]] &] (* Michael De Vlieger, Dec 08 2017 *)
-
PARI
isok(n) = my(q=sigma(n)/eulerphi(n)); issquare(q) && (denominator(q) == 1); \\ Michel Marcus, Dec 07 2017; corrected Sep 21 2019
Formula
a(n) = sigma(n)/phi(n) = m^2, for some integer m.
Comments