A293417 Decimal expansion of the minimum ripple factor for a reflectionless, Chebyshev filter, in the limit where the order approaches infinity.
2, 1, 9, 4, 8, 6, 9, 3, 0, 8, 7, 6, 8, 1, 3, 9, 1, 6, 8, 9, 4, 5, 8, 8, 3, 4, 4, 8, 7, 6, 6, 0, 7, 1, 7, 9, 4, 3, 0, 9, 2, 1, 3, 3, 3, 1, 6, 8, 8, 3, 8, 7, 4, 1, 9, 4, 1, 9, 8, 0, 8, 8, 6, 1, 2, 7, 5, 1, 0, 0, 4, 6, 9, 4, 6, 8, 7, 0, 8, 2, 4, 5, 2, 8, 3, 7, 3, 5, 5, 2, 5, 1, 5, 5, 2, 4, 0, 5, 0, 7, 4, 4, 7, 5, 9, 6, 8, 7
Offset: 0
Examples
0.2194869308...
References
- M. Morgan, Reflectionless Filters, Norwood, MA: Artech House, pp. 129-132, January 2017.
Links
- Iain Fox, Table of n, a(n) for n = 0..20000
Crossrefs
Programs
-
Magma
R:= RealField(); Sqrt(Exp(4*Argtanh(Exp(-Pi(R)*Sqrt(2))))-1); // G. C. Greubel, Feb 16 2018
-
Mathematica
RealDigits[Sqrt[Exp[4 ArcTanh[Exp[-(Pi Sqrt[2])]]] - 1],10,100][[1]]
-
PARI
sqrt(exp(4*atanh(exp(-Pi*sqrt(2))))-1) \\ Michel Marcus, Oct 15 2017
Formula
Equals sqrt(exp(4*arctanh(exp(-Pi*sqrt(2))))-1).
Comments