A293882 Continued fraction expansion of the minimum ripple factor for a reflectionless, Chebyshev filter, in the limit where the order approaches infinity.
0, 4, 1, 1, 3, 1, 22, 1, 3, 3, 1, 1, 1, 13, 10, 3, 4, 2, 7, 1, 4, 6, 2, 4, 1, 1, 6, 2, 1, 2, 1, 1, 2, 3, 42, 3, 6, 3, 2, 1, 1, 1, 2, 2, 8, 2, 4, 1, 2, 3, 1, 1, 1, 2, 5, 8, 3, 1, 1, 3, 2, 3, 2, 11, 1, 3, 6, 6, 1, 1, 3, 1, 1, 103, 2, 2, 2, 3, 2, 44, 2, 1, 1, 2, 1, 5, 1, 9, 1, 1, 5, 1, 1, 7, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 4, 45
Offset: 0
Examples
1/(4 + 1/(1 + 1/(1 + 1/(3 + 1/(1 + 1/(22 + 1/(1 + 1/(3 + 1/(3 +...
References
- M. Morgan, Reflectionless Filters, Norwood, MA: Artech House, pp. 129-132, January 2017.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..9999
Crossrefs
Programs
-
Magma
R:= RealField();ContinuedFraction(Sqrt(Exp( 4*Argtanh(Exp (-(Pi(R)*Sqrt(2))))) - 1)); // Michel Marcus, Feb 17 2018
-
Mathematica
ContinuedFraction[Sqrt[Exp[4 ArcTanh[Exp[-(Pi Sqrt[2])]]] - 1],130]
-
PARI
contfrac(sqrt(exp(4*atanh(exp(-Pi*sqrt(2)))) - 1)) \\ Michel Marcus, Feb 17 2018
Extensions
Offset changed by Andrew Howroyd, Aug 10 2024
Comments