A293415 Decimal expansion of the minimum ripple factor for a seventh-order, reflectionless, Chebyshev filter.
2, 1, 8, 7, 0, 7, 7, 2, 3, 9, 7, 1, 5, 5, 9, 3, 9, 7, 4, 1, 9, 1, 1, 8, 0, 2, 0, 0, 6, 7, 2, 7, 2, 3, 4, 7, 6, 0, 3, 3, 7, 2, 7, 6, 9, 6, 6, 8, 1, 4, 2, 0, 8, 6, 6, 5, 0, 8, 0, 6, 6, 4, 3, 6, 3, 5, 2, 1, 1, 6, 7, 2, 3, 1, 7, 1, 1, 3, 7, 7, 5, 4, 3, 8, 7, 3, 2, 1, 3, 6, 2, 5, 7, 5, 7, 3, 8, 5, 8, 5, 9, 5, 9, 4, 3, 5, 7, 8
Offset: 0
Examples
0.2187077239...
References
- M. Morgan, Reflectionless Filters, Norwood, MA: Artech House, pp. 129-132, January 2017.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
R:= RealField(); Sqrt(Exp(4*Argtanh(Exp(-2*7*Argsinh(Sqrt(1/2* Sin(Pi(R)/7)*Tan(Pi(R)/7))))))-1); // G. C. Greubel, Feb 15 2018
-
Mathematica
RealDigits[Sqrt[Exp[4 ArcTanh[Exp[-2*7*ArcSinh[Sqrt[1/2*Sin[Pi/7] Tan[Pi/7]]]]]] - 1], 10, 100][[1]]
-
PARI
sqrt(exp(4*atanh(exp(-2*7*asinh(sqrt(1/2*sin(Pi/7)*tan(Pi/7))))))-1) \\ Michel Marcus, Oct 16 2017
Formula
Equals sqrt(exp(4*arctanh(exp(-2*7*arcsinh(sqrt(1/2*sin(Pi/7)tan(Pi/7))))))-1).
Comments