cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293421 The PD_t(n) function (Number of tagged parts over all the partitions of n with designated summands).

Original entry on oeis.org

1, 3, 6, 13, 24, 45, 77, 132, 213, 346, 537, 834, 1257, 1893, 2778, 4077, 5865, 8421, 11903, 16785, 23364, 32444, 44562, 61041, 82859, 112164, 150639, 201768, 268413, 356100, 469636, 617724, 808236, 1054802, 1370127, 1775286, 2290610, 2948427, 3780717, 4836814
Offset: 1

Views

Author

Seiichi Manyama, Oct 08 2017

Keywords

Examples

			n = 4
-------------------
4'            -> 1
3'+ 1'        -> 2
2'+ 2         -> 1
2 + 2'        -> 1
2'+ 1'+ 1     -> 2
2'+ 1 + 1'    -> 2
1'+ 1 + 1 + 1 -> 1
1 + 1'+ 1 + 1 -> 1
1 + 1 + 1'+ 1 -> 1
1 + 1 + 1 + 1'-> 1
-------------------
a(4)          = 13.
		

Crossrefs

Cf. A077285 (PD(n)), A293422, A293423.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i>1, b(n, i-1), 0)+
          add((p-> p+[0, p[1]])(b(n-i*j, min(n-i*j, i-1))*j), j=`if`(i=1, n, 1..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 18 2025
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n)
      partition(n, 1, n).map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values}.map{|i| i.size * i.inject(:*)}.inject(:+)
    end
    def A293421(n)
      (1..n).map{|i| A(i)}
    end
    p A293421(40)

Formula

G.f.: (1/2) * (Product_{k>0} (1 - q^(3*k))^5/((1 - q^k)^3*(1 - q^(6*k))^2) - Product_{k>0} (1 - q^(6*k))/((1 - q^k)*(1 - q^(2*k))*(1 - q^(3*k)))).
a(n) = (1/2) * (A293423(n) - A077285(n)).
a(n) ~ 5^(1/4) * exp(sqrt(10*n)*Pi/3) / (9*2^(5/4)*n^(3/4)). - Vaclav Kotesovec, Oct 15 2017