A293421 The PD_t(n) function (Number of tagged parts over all the partitions of n with designated summands).
1, 3, 6, 13, 24, 45, 77, 132, 213, 346, 537, 834, 1257, 1893, 2778, 4077, 5865, 8421, 11903, 16785, 23364, 32444, 44562, 61041, 82859, 112164, 150639, 201768, 268413, 356100, 469636, 617724, 808236, 1054802, 1370127, 1775286, 2290610, 2948427, 3780717, 4836814
Offset: 1
Keywords
Examples
n = 4 ------------------- 4' -> 1 3'+ 1' -> 2 2'+ 2 -> 1 2 + 2' -> 1 2'+ 1'+ 1 -> 2 2'+ 1 + 1' -> 2 1'+ 1 + 1 + 1 -> 1 1 + 1'+ 1 + 1 -> 1 1 + 1 + 1'+ 1 -> 1 1 + 1 + 1 + 1'-> 1 ------------------- a(4) = 13.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Bernard L. S. Lin, The number of tagged parts over the partitions with designated summands, Journal of Number Theory.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i>1, b(n, i-1), 0)+ add((p-> p+[0, p[1]])(b(n-i*j, min(n-i*j, i-1))*j), j=`if`(i=1, n, 1..n/i))) end: a:= n-> b(n$2)[2]: seq(a(n), n=1..40); # Alois P. Heinz, Jul 18 2025
-
Ruby
def partition(n, min, max) return [[]] if n == 0 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}} end def A(n) partition(n, 1, n).map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values}.map{|i| i.size * i.inject(:*)}.inject(:+) end def A293421(n) (1..n).map{|i| A(i)} end p A293421(40)
Formula
G.f.: (1/2) * (Product_{k>0} (1 - q^(3*k))^5/((1 - q^k)^3*(1 - q^(6*k))^2) - Product_{k>0} (1 - q^(6*k))/((1 - q^k)*(1 - q^(2*k))*(1 - q^(3*k)))).
a(n) ~ 5^(1/4) * exp(sqrt(10*n)*Pi/3) / (9*2^(5/4)*n^(3/4)). - Vaclav Kotesovec, Oct 15 2017