A377011
a(n) = Sum_{k=0..n} 3^k * binomial(2*n+1,n-k).
Original entry on oeis.org
1, 6, 34, 188, 1026, 5556, 29940, 160824, 862018, 4613636, 24667644, 131795912, 703812916, 3757135752, 20051429544, 106992663408, 570827898306, 3045193326372, 16244056119084, 86646747723048, 462161936699196, 2465043081687192, 13147597801986264, 70123266087502608
Offset: 0
-
[&+[3^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Table[Sum[3^k * Binomial[2*n+1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
a(n) = sum(k=0, n, 3^k*binomial(2*n+1, n-k));
A383832
a(n) = Sum_{k=0..n} (k+1) * 3^k * binomial(2*n+2,n-k).
Original entry on oeis.org
1, 10, 78, 548, 3630, 23148, 143724, 874888, 5245038, 31065500, 182189348, 1059775608, 6122246572, 35160205752, 200902089240, 1142857957392, 6475994731758, 36569545322364, 205869970843764, 1155749458070040, 6472151016349284, 36161680227612456, 201628061114911848
Offset: 0
-
[&+[(k+1) * 3^k * Binomial(2*n+2,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Table[Sum[(k+1)* 3^k * Binomial[2*n+2,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
a(n) = sum(k=0, n, (k+1)*3^k*binomial(2*n+2, n-k));
A386940
a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(2*n-k-1,n-k).
Original entry on oeis.org
1, 3, 13, 60, 285, 1378, 6748, 33372, 166365, 834900, 4213638, 21368724, 108820764, 556184580, 2851679620, 14661848560, 75568345821, 390330333402, 2020046912260, 10472193542100, 54373036935910, 282704274266040, 1471722678992700, 7670327017789800, 40017679829372700
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*k, k)*binomial(2*n-k-1, n-k));
A386942
a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(2*n-k,n-k).
Original entry on oeis.org
1, 8, 54, 340, 2060, 12180, 70812, 406656, 2313630, 13067340, 73372728, 410013864, 2282066332, 12658839200, 70017730680, 386314361808, 2126818591932, 11686657363236, 64108376373700, 351142219736000, 1920711937207140, 10493241496749000, 57263080117042800
Offset: 0
-
[&+[(2*k+1) * Binomial (2*k, k) *Binomial(2*n-k, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Table[Sum[(2*k+1) *Binomial[2*k,k]* Binomial[2*n-k,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(2*n-k, n-k));
Showing 1-4 of 4 results.