cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293560 Decimal expansion of real root of 1 - x - x^3 - x^5.

Original entry on oeis.org

6, 3, 6, 8, 8, 2, 9, 1, 6, 8, 0, 1, 8, 4, 4, 8, 4, 8, 4, 9, 0, 0, 6, 8, 2, 8, 0, 4, 5, 0, 3, 2, 4, 1, 3, 6, 5, 8, 3, 5, 9, 4, 7, 3, 2, 1, 0, 3, 8, 6, 2, 2, 1, 7, 7, 0, 1, 8, 2, 4, 7, 8, 0, 8, 0, 6, 6, 4, 8, 3, 0, 1, 5, 2, 8, 0, 3, 1, 8, 9, 6, 6, 3, 3, 9, 3, 9, 0, 6, 0, 0, 0, 4, 8, 8, 9, 2, 7, 8, 2, 0, 1, 8, 4, 8, 9, 8
Offset: 0

Views

Author

Iain Fox, Oct 12 2017

Keywords

Comments

This number is the inverse of the Pisot number at A293506.

Examples

			0.636882916801844848490068280450324136583594732103862217701824780806648301528...
		

Crossrefs

Cf. A293506.

Programs

  • Mathematica
    RealDigits[ Solve[1 - x - x^3 - x^5 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Oct 12 2017 *)
    RealDigits[Root[1-x-x^3-x^5,1],10,120][[1]] (* Harvey P. Dale, Sep 21 2022 *)
  • PARI
    solve(x = 0.6, 0.7, 1 - x - x^3 - x^5) \\ (Set precision high enough) David A. Corneth, Oct 12 2017
    
  • PARI
    { default(realprecision, 20080); x=solve(x=0.6, 0.7, 1 - x - x^3 - x^5)*10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b293560.txt", n, " ", d)); } \\ Iain Fox, Oct 27 2017