cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A293506 Decimal expansion of real root of x^5 - x^4 - x^2 - 1.

Original entry on oeis.org

1, 5, 7, 0, 1, 4, 7, 3, 1, 2, 1, 9, 6, 0, 5, 4, 3, 6, 2, 9, 1, 0, 6, 6, 5, 4, 3, 5, 1, 3, 7, 1, 2, 6, 5, 5, 3, 8, 7, 3, 1, 3, 1, 6, 0, 7, 4, 2, 4, 5, 2, 7, 4, 3, 6, 9, 3, 1, 6, 5, 4, 8, 7, 7, 8, 9, 7, 3, 3, 0, 6, 6, 1, 5, 4, 4, 1, 6, 2, 3, 2, 0, 2, 2, 2, 7, 6
Offset: 1

Views

Author

Iain Fox, Oct 10 2017

Keywords

Comments

This root is also the ninth smallest of the Pisot numbers.
The ratio of successive terms of A122115 converges to this number.

Examples

			1.570147312196054362910665...
		

Crossrefs

Programs

  • Mathematica
    First@ RealDigits[Root[#^5 - #^4 - #^2 - 1 &, 1], 10, 87] (* Michael De Vlieger, Oct 23 2017 *)
  • PARI
    solve(x=1, 2, x^5 - x^4 - x^2 - 1) \\ Michel Marcus, Oct 11 2017
    
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^5 - x^4 - x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293506.txt", n, " ", d));

Extensions

More terms from Andrey Zabolotskiy, Oct 12 2017

A302118 Number of permutations p of [n] such that |p(i) - p(i-1)| is in {1,3} for all i from 2 to n.

Original entry on oeis.org

1, 1, 2, 2, 8, 12, 32, 40, 88, 118, 244, 338, 642, 912, 1650, 2402, 4182, 6200, 10492, 15786, 26166, 39814, 64994, 99738, 161020, 248670, 398248, 617912, 983890, 1531796, 2428988, 3790980, 5993746, 9371174, 14785512, 23146268, 36465816, 57137316, 89924384
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2018

Keywords

Examples

			a(3) = 2: 123, 321.
a(4) = 8: 1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321.
a(5) = 12: 12345, 12543, 14325, 14523, 32145, 32541, 34125, 34521, 52143, 52341, 54123, 54321.
		

Crossrefs

Formula

G.f.: (x^16 -3*x^15 -2*x^14 +3*x^12 +6*x^11 +2*x^10 -6*x^9 -10*x^8 -6*x^7 +6*x^6 +4*x^5 +3*x^4 -x^3 -2*x^2+1) / ((x-1) *(x+1) *(x^5+x^3+x-1) *(x^4+x^2-1)^2).
a(n) = 2 * A302119(n) for n > 1.
Limit_{n->infinity} a(n)/a(n+1) = A293560 = 1/A293506 = 0.63688291680184484849...

A302119 Number of Hamiltonian paths in the graph on n vertices {1,...,n}, with i adjacent to j iff |i-j| in {1,3}.

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 16, 20, 44, 59, 122, 169, 321, 456, 825, 1201, 2091, 3100, 5246, 7893, 13083, 19907, 32497, 49869, 80510, 124335, 199124, 308956, 491945, 765898, 1214494, 1895490, 2996873, 4685587, 7392756, 11573134, 18232908, 28568658, 44962192, 70494629
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2018

Keywords

Examples

			a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 1: 123.
a(4) = 4: 1234, 1432, 2143, 3214.
a(5) = 6: 12345, 12543, 14325, 14523, 32145, 34125.
a(6) = 16: 123456, 123654, 125436, 125634, 143256, 143652, 145236, 145632, 214365, 214563, 321456, 341256, 365214, 412365, 521436, 541236.
		

Crossrefs

Formula

G.f.: (x^16 -x^15 +x^13 +x^12 +2*x^11 -x^10 -5*x^9 -6*x^8 -2*x^7 +5*x^6 +3*x^5 +3*x^4 -x^3 -3*x^2+1) / ((x-1) *(x+1) *(x^5+x^3+x-1) *(x^4+x^2-1)^2).
a(n) = ceiling(A302118(n)/2).
limit_{n->infinity} a(n)/a(n+1) = A293560 = 1/A293506 = 0.63688291680184484849...
Showing 1-3 of 3 results.