cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A060006 Decimal expansion of real root of x^3 - x - 1 (the plastic constant).

Original entry on oeis.org

1, 3, 2, 4, 7, 1, 7, 9, 5, 7, 2, 4, 4, 7, 4, 6, 0, 2, 5, 9, 6, 0, 9, 0, 8, 8, 5, 4, 4, 7, 8, 0, 9, 7, 3, 4, 0, 7, 3, 4, 4, 0, 4, 0, 5, 6, 9, 0, 1, 7, 3, 3, 3, 6, 4, 5, 3, 4, 0, 1, 5, 0, 5, 0, 3, 0, 2, 8, 2, 7, 8, 5, 1, 2, 4, 5, 5, 4, 7, 5, 9, 4, 0, 5, 4, 6, 9, 9, 3, 4, 7, 9, 8, 1, 7, 8, 7, 2, 8, 0, 3, 2, 9, 9, 1
Offset: 1

Views

Author

Fabian Rothelius, Mar 14 2001

Keywords

Comments

Has been also called the silver number, also the plastic number.
This is the smallest Pisot-Vijayaraghavan number.
The name "plastic number" goes back to the Dutch Benedictine monk and architect Dom Hans van der Laan, who gave this name 4 years after the discovery of the number by the French engineer Gérard Cordonnier in 1924, who used the name "radiant number". - Hugo Pfoertner, Oct 07 2018
Sometimes denoted by the symbol rho. - Ed Pegg Jr, Feb 01 2019
Also the solution of 1/x + 1/(1+x+x^2) = 1. - Clark Kimberling, Jan 02 2020
Given any complex p such that real(p)>-1, this constant is the only real solution of the equation z^p+z^(p+1)=z^(p+3), and the only attractor of the complex mapping z->M(z,p), where M(z,p)=(z^p+z^(p+1))^(1/(p+3)), convergent from any complex plane point. - Stanislav Sykora, Oct 14 2021
The Pisot-Vijayaraghavan numbers were named after the French mathematician Charles Pisot (1910-1984) and the Indian mathematician Tirukkannapuram Vijayaraghavan (1902-1955). - Amiram Eldar, Apr 02 2022
The sequence a(n) = v_3^floor(n^2/4) where v_n is the smallest, positive, real solution to the equation (v_n)^n = v_n + 1 satisfies the Somos-5 recursion a(n+3)*a(n-2) = a(n+2)*a(n-1) + a(n+1)*a(n) for all n in Z. Also true if floor is removed. - Michael Somos, Mar 24 2023

Examples

			1.32471795724474602596090885447809734...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
  • Midhat J. Gazalé, Gnomon: From Pharaohs to Fractals, Princeton University Press, Princeton, NJ, 1999, see Chap. VII.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4, p. 236.
  • Ian Stewart, A Guide to Computer Dating (Feedback), Scientific American, Vol. 275 No. 5, November 1996, p. 118.

Crossrefs

Cf. A001622. A072117 gives continued fraction.
Other Pisot numbers: A086106, A092526, A228777, A293506, A293508, A293509, A293557.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ((3+Sqrt(23/3))/6)^(1/3) + ((3-Sqrt(23/3))/6)^(1/3); // G. C. Greubel, Mar 15 2019
    
  • Maple
    (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) ; evalf(%,130) ; # R. J. Mathar, Jan 22 2013
  • Mathematica
    RealDigits[ Solve[x^3 - x - 1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Sep 30 2009 *)
    s = Sqrt[23/108]; RealDigits[(1/2 + s)^(1/3) + (1/2 - s)^(1/3), 10, 111][[1]] (* Robert G. Wilson v, Dec 12 2017 *)
    RealDigits[Root[x^3-x-1,1],10,120][[1]] (* or *) RealDigits[(Surd[9-Sqrt[69],3]+Surd[9+Sqrt[69],3])/(Surd[2,3]Surd[9,3]),10,120][[1]] (* Harvey P. Dale, Sep 04 2018 *)
  • PARI
    allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060006.txt", n, " ", d)); \\ Harry J. Smith, Jul 01 2009
    
  • PARI
    (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) \\ Altug Alkan, Apr 10 2016
    
  • PARI
    polrootsreal(x^3-x-1)[1] \\ Charles R Greathouse IV, Aug 28 2016
    
  • PARI
    default(realprecision, 110); digits(floor(solve(x=1, 2, x^3 - x - 1)*10^105)) /* Michael Somos, Mar 24 2023 */
    
  • Sage
    numerical_approx(((3+sqrt(23/3))/6)^(1/3) + ((3-sqrt(23/3))/6)^(1/3), digits=100) # G. C. Greubel, Mar 15 2019

Formula

Equals (1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3). - Henry Bottomley, May 22 2003
Equals CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + ...)))). - Gerald McGarvey, Nov 26 2004
Equals sqrt(1+1/sqrt(1+1/sqrt(1+1/sqrt(1+...)))). - Gerald McGarvey, Mar 18 2006
Equals (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3). - Eric Desbiaux, Oct 17 2008
Equals Sum_{k >= 0} 27^(-k)/k!*(Gamma(2*k+1/3)/(9*Gamma(k+4/3)) - Gamma(2*k-1/3)/(3*Gamma(k+2/3))). - Robert Israel, Jan 13 2015
Equals sqrt(Phi) = sqrt(1.754877666246...) (see A109134). - Philippe Deléham, Sep 29 2020
Equals cosh(arccosh(3*c)/3)/c, where c = sqrt(3)/2 (A010527). - Amiram Eldar, May 15 2021
Equals 1/hypergeom([1/5, 2/5, 3/5, 4/5], [2/4, 3/4, 5/4], -5^5/4^4). - Gerry Martens, Mar 16 2025

Extensions

Edited and extended by Robert G. Wilson v, Aug 03 2002
Removed incorrect comments, Joerg Arndt, Apr 10 2016

A092526 Decimal expansion of (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3, the real root of x^3 - x^2 - 1.

Original entry on oeis.org

1, 4, 6, 5, 5, 7, 1, 2, 3, 1, 8, 7, 6, 7, 6, 8, 0, 2, 6, 6, 5, 6, 7, 3, 1, 2, 2, 5, 2, 1, 9, 9, 3, 9, 1, 0, 8, 0, 2, 5, 5, 7, 7, 5, 6, 8, 4, 7, 2, 2, 8, 5, 7, 0, 1, 6, 4, 3, 1, 8, 3, 1, 1, 1, 2, 4, 9, 2, 6, 2, 9, 9, 6, 6, 8, 5, 0, 1, 7, 8, 4, 0, 4, 7, 8, 1, 2, 5, 8, 0, 1, 1, 9, 4, 9, 0, 9, 2, 7, 0, 0, 6, 4, 3, 8
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2004

Keywords

Comments

This is the limit x of the ratio N(n+1)/N(n) for n -> infinity of the Narayana sequence N(n) = A000930(n). The real root of x^3 - x^2 - 1. See the formula section. - Wolfdieter Lang, Apr 24 2015
This is the fourth smallest Pisot number. - Iain Fox, Oct 13 2017
Sometimes called the supergolden ratio or Narayana's cows constant, and denoted by the symbol psi. - Ed Pegg Jr, Feb 01 2019

Examples

			1.46557123187676802665673122521993910802557756847228570164318311124926...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.3.
  • Paul J. Nahin, The Logician and the Engineer, How George Boole and Claude Shannon Created the Information Age, Princeton University Press, Princeton and Oxford, 2013, Chap. 7: Some Combinational Logic Examples, Section 7.1: Channel Capacity, Shannon's Theorem, and Error-Detection Theory, page 120.

Crossrefs

Other Pisot numbers: A060006, A086106, A228777, A293506, A293508, A293509, A293557.
Cf. A381124 (numerators of convergents).
Cf. A381125 (denominators of convergents).

Programs

  • Mathematica
    RealDigits[(2 Cos[ ArcCos[ 29/2]/3] + 1)/3, 10, 111][[1]] (* Robert G. Wilson v, Apr 12 2004 *)
    RealDigits[ Solve[ x^3 - x^2 - 1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Oct 10 2013 *)
  • PARI
    allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b092526.txt", n, " ", d));  \\ Harry J. Smith, Jun 21 2009

Formula

The real root of x^3 - x^2 - 1. - Franklin T. Adams-Watters, Oct 12 2006
The only real irrational root of x^4-x^2-x-1 (-1 is also a root). [Nahim]
Equals (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3.
Equals 1 + A088559.
Equals (1/6)*(116+12*sqrt(93))^(1/3) + 2/(3*(116+12*sqrt(93))^(1/3)) + 1/3. - Vaclav Kotesovec, Dec 18 2014
Equals 1/A263719. - Alois P. Heinz, Apr 15 2018
Equals (1 + 1/r + r)/3 where r = ((29 + sqrt(837))/2)^(1/3). - Peter Luschny, Apr 04 2020
Equals (1/3)*(1 + ((1/2)*(29 + (3*sqrt(93))))^(1/3) + ((1/2)*(29 - 3*sqrt(93)))^(1/3)). See A075778. - Wolfdieter Lang, Aug 17 2022

A293508 Decimal expansion of the positive real root of x^6 - x^5 - x^4 + x^2 - 1.

Original entry on oeis.org

1, 5, 0, 1, 5, 9, 4, 8, 0, 3, 5, 3, 9, 0, 8, 7, 3, 6, 6, 3, 7, 7, 7, 8, 3, 1, 2, 7, 3, 7, 1, 0, 4, 6, 1, 0, 8, 4, 8, 6, 3, 9, 8, 3, 3, 6, 2, 5, 3, 5, 8, 5, 3, 4, 2, 2, 4, 8, 3, 9, 4, 1, 8, 6, 0, 6, 3, 3, 4, 3, 6, 1, 2, 5, 9, 7, 1, 2, 8, 8, 9, 8, 1, 3, 4, 1, 1, 4, 2, 4, 6, 0, 2, 9, 2, 0, 0, 2, 0, 1, 7, 2, 5, 5, 8
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the fifth smallest of the Pisot numbers.

Examples

			1.501594803539087366377783...
		

Crossrefs

Programs

  • Mathematica
    First@ RealDigits[Root[#^6 - #^5 - #^4 + #^2 - 1 &, 2], 10, 105] (* Michael De Vlieger, Oct 23 2017 *)
  • PARI
    solve(x=1, 2, x^6 - x^5 - x^4 + x^2 - 1) \\ Michel Marcus, Oct 11 2017
    
  • PARI
    { default(realprecision, 20080); x=solve(x=1, 2, x^6 - x^5 - x^4 + x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293508.txt", n, " ", d)); }

A293509 Decimal expansion of real root of x^5 - x^3 - x^2 - x - 1.

Original entry on oeis.org

1, 5, 3, 4, 1, 5, 7, 7, 4, 4, 9, 1, 4, 2, 6, 6, 9, 1, 5, 4, 3, 5, 9, 7, 0, 0, 7, 6, 1, 0, 9, 3, 7, 5, 7, 0, 1, 8, 8, 2, 5, 4, 5, 0, 3, 8, 5, 1, 6, 5, 9, 5, 1, 3, 5, 3, 6, 8, 5, 3, 1, 8, 6, 3, 0, 0, 8, 0, 6, 3, 0, 2, 3, 2, 1, 4, 0, 8, 2, 2, 8, 1, 4, 3, 6, 7, 8
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the sixth smallest of the Pisot numbers.

Examples

			1.53415774491426691543597007610937570188254503851659513536853186300806302321...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Solve[ x^5 - x^3 - x^2 - x - 1 == 0, x, WorkingPrecision -> 111][[-1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Nov 04 2017 *)
  • PARI
    solve(x=1, 2, x^5 - x^3 - x^2 - x - 1) \\ Michel Marcus, Oct 13 2017
    
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^5 - x^3 - x^2 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293509.txt", n, " ", d)); \\ Iain Fox, Oct 23 2017
    
  • PARI
    polrootsreal(x^5 - x^3 - x^2 - x - 1)[1] \\ Charles R Greathouse IV, Nov 04 2017

A293557 Decimal expansion of real root of x^7 - x^6 - x^5 + x^2 - 1.

Original entry on oeis.org

1, 5, 4, 5, 2, 1, 5, 6, 4, 9, 7, 3, 2, 7, 5, 5, 2, 4, 3, 2, 5, 2, 5, 5, 0, 6, 2, 4, 1, 0, 5, 1, 1, 6, 1, 1, 9, 6, 9, 1, 4, 7, 0, 0, 5, 5, 3, 6, 4, 2, 3, 3, 1, 2, 3, 5, 6, 0, 6, 1, 0, 7, 2, 5, 4, 9, 8, 2, 1, 1, 5, 8, 8, 1, 6, 6, 5, 3, 3, 1, 2, 0, 5, 0, 4, 3, 1
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the seventh smallest of the Pisot numbers.

Examples

			1.545215649732755243252550...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Root[#^7 - #^6 - #^5 + #^2 - 1 &, 1], 10, 100]] (* Paolo Xausa, Jun 25 2024 *)
  • PARI
    solve(x=1, 2, x^7 - x^6 - x^5 + x^2 - 1) \\ Michel Marcus, Oct 13 2017
    
  • PARI
    { default(realprecision, 20080); x=solve(x=1, 2, x^7 - x^6 - x^5 + x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293557.txt", n, " ", d)); }

A060961 Number of compositions (ordered partitions) of n into 1's, 3's and 5's.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 182, 286, 449, 705, 1107, 1738, 2729, 4285, 6728, 10564, 16587, 26044, 40893, 64208, 100816, 158296, 248548, 390257, 612761, 962125, 1510678, 2371987, 3724369, 5847808, 9181920, 14416967, 22636762, 35543051
Offset: 0

Views

Author

Len Smiley, May 08 2001

Keywords

Comments

Lim_{n->infinity} a(n)/a(n-1) = 1.57014... = A293506. This is the largest absolute value of a root of the characteristic polynomial of the recursion (x^5 - x^4 - x^2 - 1), same as the inverse of smallest absolute value of a root of the reciprocal (here -x^5 - x^3 - x + 1, the denominator of the g.f.) of the characteristic polynomial. - Bob Selcoe, Jun 09 2013
From Bob Selcoe, May 01 2014: (Start)
Since a(n) is a recurrence of the form: a(n) = Sum_(a(n-Fi)), i=1..z; where F(i)-F(i-1) is constant (C), and seed values are a(0)=1 and a(<0)=0 exclusively; then apply the following definitions:
I. For T-nomial triangles T(m,k), let T be defined as the number of terms in the recurrence equaling a(n). That is, T => z => ((Fz-F1)/C)+1. In this sequence, F1=1, C=2 and T => z => ((5-1)/2)+1 = 3. Therefore, the applicable triangle is trinomial for this sequence.
II. Let m' be defined as the maxval of m and k' the minval of k such that n = m'*F1+k'*C. For example, in this sequence: n=7: m'=7 and k'=0 because 7*1+0*2=7. (Note that m' always equals n and k' always equals 0 when F1=1)
III. THEN: a(n) = Sum_T((m'-C*j/G),(k'+F1*j/G)), j=0..q; where (m'-C*q)) is the floor and (k'+F1*q) the ceiling for the T-nomial triangle, and G is the greatest common factor of all Fi. In general, T, F1, C and G are invariant across n; while m', k' and q vary (the exception being k' always equaling 0 when F1=1). In this sequence, T=3, F1=1, C=2, G=1 and k'=0; m' and q vary with a(n).
Example 1. a(11): T=3, F1=1, C=2, G=1, k'=0 (invariant); m'=11, q=4. a(11) = 74 => T(11,0) + T(9,1) + T(7,2) + T(5,3) + T(3,4) for T==trinomial triangle. T(11,0)=1, T(9,1)=9, T(7,2)=28, T(5,3)=30 and T(3,4)=6. 1+9+28+30+6 = 74 (Note that T(3,4) is the final term because the ostensible next term [T(1,5)] is not contained in the trinomial triangle. Therefore q=4.)
Example 2. a(14): m'=14, q=5. a(14) = 286 => T(14,0) + T(12,1) + T(10,2) + T(8,3) + T(6,4) + T(4,5) => 1+12+55+112+90+16 = 286. (End)

Crossrefs

Cf. A293506 (growth power).
Cf. A060945 (compositions into 1's, 2's, and 4's).
Cf. A027907 (trinomial coefficients triangle).

Programs

  • Mathematica
    CoefficientList[Series[ 1 /(1 - z - z^3 - z^5), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
    LinearRecurrence[{1,0,1,0,1},{1,1,1,2,3},50] (* Harvey P. Dale, Apr 21 2022 *)
  • Maxima
    a(n):=sum((sum(binomial(j,3*n-5*m+2*j)*binomial(2*m-n,j),j,0,2*m-n)),m,floor((n+1)/2),n); /* Vladimir Kruchinin, Mar 11 2013 */
  • PARI
    my(N=66, x='x+O('x^N)); Vec(1/(1-x-x^3-x^5)) \\ Joerg Arndt, Oct 21 2012
    

Formula

a(n) = a(n-1) + a(n-3) + a(n-5).
G.f.: 1 / (1-(x+x^3+x^5)).
a(n) = Sum_{m=floor((n+1)/2)..n} Sum_{j=0..2*m-n} binomial(j,3*n-5*m+2*j)*binomial(2*m-n,j). - Vladimir Kruchinin, Mar 11 2013

Extensions

a(0)=1 prepended by Joerg Arndt, Oct 21 2012

A302118 Number of permutations p of [n] such that |p(i) - p(i-1)| is in {1,3} for all i from 2 to n.

Original entry on oeis.org

1, 1, 2, 2, 8, 12, 32, 40, 88, 118, 244, 338, 642, 912, 1650, 2402, 4182, 6200, 10492, 15786, 26166, 39814, 64994, 99738, 161020, 248670, 398248, 617912, 983890, 1531796, 2428988, 3790980, 5993746, 9371174, 14785512, 23146268, 36465816, 57137316, 89924384
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2018

Keywords

Examples

			a(3) = 2: 123, 321.
a(4) = 8: 1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321.
a(5) = 12: 12345, 12543, 14325, 14523, 32145, 32541, 34125, 34521, 52143, 52341, 54123, 54321.
		

Crossrefs

Formula

G.f.: (x^16 -3*x^15 -2*x^14 +3*x^12 +6*x^11 +2*x^10 -6*x^9 -10*x^8 -6*x^7 +6*x^6 +4*x^5 +3*x^4 -x^3 -2*x^2+1) / ((x-1) *(x+1) *(x^5+x^3+x-1) *(x^4+x^2-1)^2).
a(n) = 2 * A302119(n) for n > 1.
Limit_{n->infinity} a(n)/a(n+1) = A293560 = 1/A293506 = 0.63688291680184484849...

A293560 Decimal expansion of real root of 1 - x - x^3 - x^5.

Original entry on oeis.org

6, 3, 6, 8, 8, 2, 9, 1, 6, 8, 0, 1, 8, 4, 4, 8, 4, 8, 4, 9, 0, 0, 6, 8, 2, 8, 0, 4, 5, 0, 3, 2, 4, 1, 3, 6, 5, 8, 3, 5, 9, 4, 7, 3, 2, 1, 0, 3, 8, 6, 2, 2, 1, 7, 7, 0, 1, 8, 2, 4, 7, 8, 0, 8, 0, 6, 6, 4, 8, 3, 0, 1, 5, 2, 8, 0, 3, 1, 8, 9, 6, 6, 3, 3, 9, 3, 9, 0, 6, 0, 0, 0, 4, 8, 8, 9, 2, 7, 8, 2, 0, 1, 8, 4, 8, 9, 8
Offset: 0

Views

Author

Iain Fox, Oct 12 2017

Keywords

Comments

This number is the inverse of the Pisot number at A293506.

Examples

			0.636882916801844848490068280450324136583594732103862217701824780806648301528...
		

Crossrefs

Cf. A293506.

Programs

  • Mathematica
    RealDigits[ Solve[1 - x - x^3 - x^5 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Oct 12 2017 *)
    RealDigits[Root[1-x-x^3-x^5,1],10,120][[1]] (* Harvey P. Dale, Sep 21 2022 *)
  • PARI
    solve(x = 0.6, 0.7, 1 - x - x^3 - x^5) \\ (Set precision high enough) David A. Corneth, Oct 12 2017
    
  • PARI
    { default(realprecision, 20080); x=solve(x=0.6, 0.7, 1 - x - x^3 - x^5)*10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b293560.txt", n, " ", d)); } \\ Iain Fox, Oct 27 2017

A122115 a(n) = a(n-1) + a(n-3) + a(n-5).

Original entry on oeis.org

-3, -1, 4, 8, 15, 16, 23, 42, 66, 104, 162, 251, 397, 625, 980, 1539, 2415, 3792, 5956, 9351, 14682, 23053, 36196, 56834, 89238, 140116, 220003, 345437, 542387, 851628, 1337181, 2099571, 3296636, 5176204, 8127403, 12761220, 20036995, 31461034, 49398458, 77562856, 121785110, 191220563, 300244453
Offset: 1

Views

Author

Jian Tang (jian.tang(AT)gmail.com), Oct 19 2006

Keywords

Comments

The ratio of successive terms of this sequence converges to the real root of x^5 - x^4 - x^2 - 1 which is approximately 1.5701473... (see A293506). - Iain Fox, Oct 12 2017

Examples

			  -3 +  4 + 15 = 16
  -1 +  8 + 16 = 23
   4 + 15 + 23 = 42
		

Crossrefs

This sequence includes the "Lost" numbers, 4 8 15 16 23 42, A104101. - Rick Powers (powersr(AT)westerntc.edu), Sep 18 2009

Programs

  • Maple
    a[1]:=-3: a[2]:=-1: a[3]:=4: a[4]:=8: a[5]:=15: for n from 6 to 45 do a[n]:=a[n-1]+a[n-3]+a[n-5] od: seq(a[n],n=1..45); # Emeric Deutsch, Oct 23 2006
  • Mathematica
    LinearRecurrence[{1,0,1,0,1},{-3,-1,4,8,15},50] (* Harvey P. Dale, Apr 22 2013 *)
  • PARI
    first(n) = my(res = vector(n)); res[1] = -3; res[2] = -1; res[3] = 4; res[4] = 8; res[5] = 15; for(i = 6, n, res[i] = res[i-1] + res[i-3] + res[i-5]); res \\ Iain Fox, Oct 23 2017

Formula

G.f.: x*(-3 + 2*x + 5x^2 + 7*x^3 + 8*x^4)/(1 - x - x^3 - x^5). - Philippe Deléham, Oct 20 2006

Extensions

More terms from Emeric Deutsch, Oct 23 2006

A302119 Number of Hamiltonian paths in the graph on n vertices {1,...,n}, with i adjacent to j iff |i-j| in {1,3}.

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 16, 20, 44, 59, 122, 169, 321, 456, 825, 1201, 2091, 3100, 5246, 7893, 13083, 19907, 32497, 49869, 80510, 124335, 199124, 308956, 491945, 765898, 1214494, 1895490, 2996873, 4685587, 7392756, 11573134, 18232908, 28568658, 44962192, 70494629
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2018

Keywords

Examples

			a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 1: 123.
a(4) = 4: 1234, 1432, 2143, 3214.
a(5) = 6: 12345, 12543, 14325, 14523, 32145, 34125.
a(6) = 16: 123456, 123654, 125436, 125634, 143256, 143652, 145236, 145632, 214365, 214563, 321456, 341256, 365214, 412365, 521436, 541236.
		

Crossrefs

Formula

G.f.: (x^16 -x^15 +x^13 +x^12 +2*x^11 -x^10 -5*x^9 -6*x^8 -2*x^7 +5*x^6 +3*x^5 +3*x^4 -x^3 -3*x^2+1) / ((x-1) *(x+1) *(x^5+x^3+x-1) *(x^4+x^2-1)^2).
a(n) = ceiling(A302118(n)/2).
limit_{n->infinity} a(n)/a(n+1) = A293560 = 1/A293506 = 0.63688291680184484849...
Showing 1-10 of 14 results. Next