A293588 E.g.f.: exp(x + x^6/6).
1, 1, 1, 1, 1, 1, 121, 841, 3361, 10081, 25201, 55441, 6763681, 86692321, 605765161, 3027624601, 12109056961, 41169011521, 5063607974881, 94197184734241, 939457659787201, 6572292677455681, 36141156689382361, 166238526616664041, 20612479896229156321
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..524
- Marcello Artioli, Giuseppe Dattoli, Silvia Licciardi, and Simonetta Pagnutti, Motzkin Numbers: an Operational Point of View, arXiv:1703.07262 [math.CO], 2017.
Crossrefs
Programs
-
Magma
F:= Factorial; [(&+[ F(n)/(6^k*F(k)*F(n-6*k)): k in [0..Floor(n/3)]]): n in [0..30]]; // G. C. Greubel, Mar 07 2021
-
Mathematica
With[{nn=30},CoefficientList[Series[Exp[x+x^6/6],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Dec 11 2017 *) Table[Sum[n!/(6^k*k!*(n-6*k)!), {k, 0, n/6}], {n, 0, 30}] (* G. C. Greubel, Mar 07 2021 *)
-
PARI
my(x = 'x + O('x^30)); Vec(serlaplace(exp(x + x^6/6))) \\ Michel Marcus, Oct 13 2017
-
Sage
f=factorial; [sum( f(n)/(6^k*f(k)*f(n-6*k)) for k in [0..n/3]) for n in [0..30]] # G. C. Greubel, Mar 07 2021
Formula
a(n) = a(n-1) + (n-1)!/(n-6)! * a(n-6).
a(n) = Sum_{j=0..floor(n/6)} n!/(6^j*j!*(n-6*j)!). - G. C. Greubel, Mar 07 2021
Comments