A293777 Number of centrally symmetric diagonal Latin squares of order n with the first row in ascending order.
1, 0, 0, 2, 8, 0, 2816, 135168, 327254016
Offset: 1
Examples
0 1 2 3 4 5 6 7 8 6 3 0 2 7 8 1 4 5 3 2 1 8 6 7 0 5 4 7 8 6 5 1 3 4 0 2 8 6 4 7 2 0 5 3 1 2 7 5 6 8 4 3 1 0 5 4 7 0 3 1 8 2 6 4 5 8 1 0 2 7 6 3 1 0 3 4 5 6 2 8 7
Links
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- Eduard I. Vatutin, On the interconnection between double and central symmetries in diagonal Latin squares (in Russian).
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, V. S. Titov, Properties of central symmetry for diagonal Latin squares, High-performance computing systems and technologies, No. 1 (8), 2018, pp. 74-78. (in Russian)
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, V. S. Titov, Central Symmetry Properties for Diagonal Latin Squares, Problems of Information Technology, No. 2, 2019, pp. 3-8. doi: 10.25045/jpit.v10.i2.01.
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles
Formula
a(n) = A293778(n) / n!.
Comments