cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A287650 Number of doubly symmetric diagonal Latin squares of order 4n with the first row in ascending order.

Original entry on oeis.org

2, 12288, 81217160478720, 6101215007109090122576072540160
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

A doubly symmetric square has symmetries in both the horizontal and vertical planes.
The plane symmetry requires one-to-one correspondence between the values of elements a[i,j] and a[N+1-i,j] in a vertical plane, and between the values of elements a[i,j] and a[i,N+1-j] in a horizontal plane for 1 <= i,j <= N. - Eduard I. Vatutin, Alexey D. Belyshev, Oct 09 2017
Belyshev (2017) proved that doubly symmetric diagonal Latin squares exist only for orders N == 0 (mod 4).
Every doubly symmetric diagonal Latin square also has central symmetry. The converse is not true in general. It follows that a(n) <= A293777(4n). - Eduard I. Vatutin, May 26 2021
a(n)/(A001147(n)*2^(n*(4*n-3))) is the number of 2n X 2n grids with two instances of each of 1..n on the main diagonal and in each row and column with the first row in nondescreasing order. - Andrew Howroyd, May 30 2021

Examples

			Doubly symmetric diagonal Latin square example:
  0 1 2 3 4 5 6 7
  3 2 7 6 1 0 5 4
  2 3 1 0 7 6 4 5
  6 7 5 4 3 2 0 1
  7 6 3 2 5 4 1 0
  4 5 0 1 6 7 2 3
  5 4 6 7 0 1 3 2
  1 0 4 5 2 3 7 6
Reflection of all rows is equivalent to the exchange of elements 0 and 7, 1 and 6, 2 and 5, 3 and 4; hence, this square is horizontally symmetric. Reflection of all columns is equivalent to the exchange of elements 0 and 1, 2 and 4, 3 and 5, 6 and 7; hence, the square is also vertically symmetric.
From _Andrew Howroyd_, May 30 2021: (Start)
a(2) = 4*3*1024 = 12288. The 4 base quarter square arrangements are:
  1 1 2 2  1 1 2 2  1 1 2 2  1 1 2 2
  1 2 1 2  1 2 2 1  2 2 1 1  2 2 1 1
  2 1 2 1  2 2 1 1  1 1 2 2  2 2 1 1
  2 2 1 1  2 1 1 2  2 2 1 1  1 1 2 2
(End)
		

Crossrefs

Formula

a(n) = A292517(n) / (4n)!.

Extensions

a(2) corrected by Eduard I. Vatutin, Alexey D. Belyshev, Oct 09 2017
Edited and a(3) from Alexey D. Belyshev added by Max Alekseyev, Aug 23 2018, Sep 07 2018
a(4) from Andrew Howroyd, May 31 2021

A340546 Number of main classes of diagonal Latin squares of order 2n that contain a one-plane symmetric square.

Original entry on oeis.org

0, 1, 2, 9717
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 11 2021

Keywords

Comments

A one-plane symmetric diagonal Latin square is a vertically or horizontally symmetric diagonal Latin square (see A296060). Such diagonal Latin squares do not exist for odd orders > 1.

Examples

			A horizontally symmetric diagonal Latin square:
  0 1 2 3 4 5
  4 2 0 5 3 1
  5 4 3 2 1 0
  2 5 4 1 0 3
  3 0 1 4 5 2
  1 3 5 0 2 4
A vertically symmetric diagonal Latin square:
  0 1 2 3 4 5
  4 2 5 0 3 1
  3 5 1 2 0 4
  5 3 0 4 1 2
  2 4 3 1 5 0
  1 0 4 5 2 3
Both are one-plane symmetric diagonal Latin squares.
		

Crossrefs

Extensions

Name clarified by Andrew Howroyd, Oct 22 2023

A293778 Number of centrally symmetric diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 48, 960, 0, 14192640, 5449973760, 118753937326080
Offset: 1

Views

Author

Eduard I. Vatutin, Oct 16 2017

Keywords

Comments

Centrally symmetric diagon Latin square is a square with one-to-one correspondence between elements within all pairs a[i][j] and a[n-1-i][n-1-j] (numbering of rows and columns from 0 to n-1).
It seems that a(n)=0 for n=2 and n=3 (diagonal Latin squares of these sizes don't exist) and for n=2 (mod 4).
Every doubly symmetric diagonal Latin square also has central symmetry. The converse is not true in general. It follows that A292517(n) <= a(4n). - Eduard I. Vatutin, May 26 2021

Examples

			0 1 2 3 4 5 6 7 8
6 3 0 2 7 8 1 4 5
3 2 1 8 6 7 0 5 4
7 8 6 5 1 3 4 0 2
8 6 4 7 2 0 5 3 1
2 7 5 6 8 4 3 1 0
5 4 7 0 3 1 8 2 6
4 5 8 1 0 2 7 6 3
1 0 3 4 5 6 2 8 7
		

Crossrefs

Formula

a(n) = A293777(n) * n!.

A340545 Number of main classes of centrally symmetric diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 32, 301, 430090
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 11 2021

Keywords

Comments

A centrally symmetric diagonal Latin square is a square with one-to-one correspondence between elements within all pairs a[i, j] and a[n-1-i, n-1-j] (with numbering of rows and columns from 0 to n-1).
It seems that a(n)=0 for n==2 (mod 4).
Centrally symmetric Latin squares are Latin squares, so a(n) <= A287764(n).
The canonical form (CF) of a square is the lexicographically minimal item within the corresponding main class of diagonal Latin square.
Every doubly symmetric diagonal Latin square also has central symmetry. The converse is not true in general. It follows that A340550(n) <= a(n). - Eduard I. Vatutin, May 28 2021

Examples

			For n=4 there is a single CF:
  0 1 2 3
  2 3 0 1
  3 2 1 0
  1 0 3 2
so a(4)=1.
For n=5 there are two different CFs:
  0 1 2 3 4   0 1 2 3 4
  2 3 4 0 1   1 3 4 2 0
  4 0 1 2 3   4 2 1 0 3
  1 2 3 4 0   2 0 3 4 1
  3 4 0 1 2   3 4 0 1 2
so a(5)=2.
Example of a centrally symmetric diagonal Latin square of order n=9:
  0 1 2 3 4 5 6 7 8
  6 3 0 2 7 8 1 4 5
  3 2 1 8 6 7 0 5 4
  7 8 6 5 1 3 4 0 2
  8 6 4 7 2 0 5 3 1
  2 7 5 6 8 4 3 1 0
  5 4 7 0 3 1 8 2 6
  4 5 8 1 0 2 7 6 3
  1 0 3 4 5 6 2 8 7
		

Crossrefs

A357473 Number of types of generalized symmetries in diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 10, 8, 12, 12
Offset: 1

Views

Author

Eduard I. Vatutin, Sep 29 2022

Keywords

Comments

The diagonal Latin square A has a generalized symmetry (automorphism) if for all cells A[x][y] = v and A[x'][y'] = v' the relation is satisfied: x' = Px[x], y' = Py[y], v' = Pv[v], where Px, Py and Pv — some permutations that are describe generalized symmetry (automorphism). In view of the possibility of an equivalent permutation of the rows and columns of the square and the corresponding transformations in permutations Px, Py and Pv, it is not the types of permutations that are important, but the structure of the multisets L(P) of cycle lengths in them (number of different multisets of order n is A000041). In view of this, codes of various generalized symmetries can be described by the types like (1,1,1) (trivial), (1,16,16) and so on (see example). Diagonal Latin squares with generalized symmetries are rare; usually they have a large number of transversals, orthogonal mates, etc.
a(n) <= A000041(n)^3. - Eduard I. Vatutin, Dec 29 2022
For all orders in which diagonal Latin squares exist a(n) >= 1 due to the existence of the trivial generalized symmetry with code (1,1,1) and Px=Py=Pv=e. - Eduard I. Vatutin, Jan 22 2023
The set of the generalized symmetries is a subset of the generalized symmetries in parastrophic slices, so a(n) <= A358515(n). - Eduard I. Vatutin, Jan 24 2023
Orthogonal diagonal Latin squares are a subset of diagonal Latin squares, so A358394(n) <= a(n). - Eduard I. Vatutin, Jan 25 2023

Examples

			For order n=5 there are 7 different multisets L(P) with codes listed below in format "code - multiset":
  1 - {1,1,1,1,1},
  2 - {1,1,1,2},
  3 - {1,1,3},
  4 - {1,2,2},
  5 - {1,4},
  6 - {2,3},
  7 - {5}.
Diagonal Latin squares of order n=5 has a(5)=8 different types of generalized symmetries:
1. A=0123442301341201304220413 (string representation of the square), Px=[0,1,2,3,4], Py=[0,1,2,3,4], Pv=[0,1,2,3,4] (trivial generalized symmetry), L(Px)={1,1,1,1,1}, L(Py)={1,1,1,1,1}, L(Pv)={1,1,1,1,1}, generalized symmetry type (1,1,1).
2. A=0123442301341201304220413, Px=[0,1,2,3,4], Py=[1,3,0,4,2], Pv=[1,3,0,4,2], L(Px)={1,1,1,1,1}, L(Py)={5}, L(Pv)={5}, generalized symmetry type (1,7,7).
3. A=0123442013143203014223401, Px=[0,3,2,4,1], Py=[1,4,2,3,0], Pv=[1,4,2,3,0], L(Px)={1,1,3}, L(Py)={1,1,3}, L(Pv)={1,1,3}, generalized symmetry type (3,3,3).
4. A=0123442301341201304220413, Px=[0,2,1,4,3], Py=[0,2,1,4,3], Pv=[0,2,1,4,3], L(Px)={1,2,2}, L(Py)={1,2,2}, L(Pv)={1,2,2}, generalized symmetry type (4,4,4).
5. A=0123442301341201304220413, Px=[0,3,4,2,1], Py=[0,3,4,2,1], Pv=[0,3,4,2,1], L(Px)={1,4}, L(Py)={1,4}, L(Pv)={1,4}, generalized symmetry type (5,5,5).
6. A=0123442301341201304220413, Px=[1,3,0,4,2], Py=[0,1,2,3,4], Pv=[4,2,3,0,1], L(Px)={5}, L(Py)={1,1,1,1,1}, L(Pv)={5}, generalized symmetry type (7,1,7).
7. A=0123442301341201304220413, Px=[1,3,0,4,2], Py=[3,4,1,2,0], Pv=[0,1,2,3,4], L(Px)={5}, L(Py)={5}, L(Pv)={1,1,1,1,1}, generalized symmetry type (7,7,1).
8. A=0123442301341201304220413, Px=[1,3,0,4,2], Py=[1,3,0,4,2], Pv=[2,0,4,1,3], L(Px)={5}, L(Py)={5}, L(Pv)={5}, generalized symmetry type (7,7,7).
		

Crossrefs

A358394 Number of types of generalized symmetries in orthogonal diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 10, 7, 0, 8
Offset: 1

Views

Author

Eduard I. Vatutin, Nov 20 2022

Keywords

Comments

An orthogonal diagonal Latin square is a square that has at least one orthogonal diagonal mate.
A diagonal Latin square A has a generalized symmetry (automorphism) if for all cells A[x][y] = v and A[x'][y'] = v' the relation is satisfied: x' = Px[x], y' = Py[y], v' = Pv[v], where Px, Py and Pv are some permutations that describe generalized symmetry (automorphism). In view of the possibility of an equivalent permutation of the rows and columns of the square and the corresponding transformations in permutations Px, Py and Pv, it is not the types of permutations that are important, but the structure of the multisets L(P) of cycle lengths in them (number of different multisets of order n is A000041). In view of this, codes of various generalized symmetries can be described by the types like (1,1,1) (trivial), (1,16,16) and so on (see example). Diagonal Latin squares with generalized symmetries are rare; usually they have a large number of transversals, orthogonal mates, etc.
a(8) >= 74, a(9) >= 41, a(10) >= 27.
a(n) <= A000041(n)^3. - Eduard I. Vatutin, Jan 01 2023
For all orders in which orthogonal diagonal Latin squares exist a(n) >= 1 due to the existence of the trivial generalized symmetry with code (1,1,1) and Px=Py=Pv=e. - Eduard I. Vatutin, Jan 22 2023
The set of the generalized symmetries is a subset of the generalized symmetries in parastrophic slices, so a(n) <= A358891(n). - Eduard I. Vatutin, Jan 24 2023
Orthogonal diagonal Latin squares are a subset of diagonal Latin squares, so a(n) <= A357473(n). - Eduard I. Vatutin, Jan 25 2023

Examples

			For order n=5 there are 7 different multisets L(P) with codes listed below in format "code - multiset":
  1 - {1,1,1,1,1},
  2 - {1,1,1,2},
  3 - {1,1,3},
  4 - {1,2,2},
  5 - {1,4},
  6 - {2,3},
  7 - {5}.
The diagonal Latin square
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
of order n=5 has all a(5)=7 possible different types of generalized symmetries:
1. Px=[0,1,2,3,4], Py=[0,1,2,3,4], Pv=[0,1,2,3,4] (trivial generalized symmetry), L(Px)={1,1,1,1,1}, L(Py)={1,1,1,1,1}, L(Pv)={1,1,1,1,1}, generalized symmetry type (1,1,1).
2. Px=[0,1,2,3,4], Py=[1,2,3,4,0], Pv=[1,2,3,4,0], L(Px)={1,1,1,1,1}, L(Py)={5}, L(Pv)={5}, generalized symmetry type (1,7,7).
3. Px=[0,4,3,2,1], Py=[0,4,3,2,1], Pv=[0,4,3,2,1], L(Px)={1,2,2}, L(Py)={1,2,2}, L(Pv)={1,2,2}, generalized symmetry type (4,4,4).
4. Px=[0,2,4,1,3], Py=[0,2,4,1,3], Pv=[0,2,4,1,3], L(Px)={1,4}, L(Py)={1,4}, L(Pv)={1,4}, generalized symmetry type (5,5,5).
5. Px=[1,2,3,4,0], Py=[0,1,2,3,4], Pv=[2,3,4,0,1], L(Px)={5}, L(Py)={1,1,1,1,1}, L(Pv)={5}, generalized symmetry type (7,1,7).
6. Px=[1,2,3,4,0], Py=[3,4,0,1,2], Pv=[0,1,2,3,4], L(Px)={5}, L(Py)={5}, L(Pv)={1,1,1,1,1}, generalized symmetry type (7,7,1).
7. Px=[1,2,3,4,0], Py=[1,2,3,4,0], Pv=[3,4,0,1,2], L(Px)={5}, L(Py)={5}, L(Pv)={5}, generalized symmetry type (7,7,7).
		

Crossrefs

A358515 Number of types of generalized symmetries in diagonal Latin squares of order n in parastrophic slices.

Original entry on oeis.org

6, 0, 0, 76, 74, 199, 861
Offset: 1

Views

Author

Eduard I. Vatutin, Nov 20 2022

Keywords

Comments

A diagonal Latin square A has a generalized symmetry (automorphism) if for all cells A[x][y] = v and A[x'][y'] = v' the relation is satisfied: x' = Px[x], y' = Py[y], v' = Pv[v], where Px, Py and Pv are some permutations that describe generalized symmetry (automorphism). In view of the possibility of an equivalent permutation of the rows and columns of the square and the corresponding transformations in permutations Px, Py and Pv, it is not the types of permutations that are important, but the structure of the multisets L(P) of cycle lengths in them (number of different multisets of order n is A000041). In view of this, codes of various generalized symmetries can be described by the types like (1,1,1) (trivial), (1,16,16) and so on (see example). A diagonal Latin square A has a generalized symmetry in parastrophic slices if for all cells A[x][y] = v and A[a'][b'] = c' the relation is satisfied: (a',b',c') = R(Px[x],Py[y],Pv[v]), where R is one of 6 possible parastrophic transformations:
1. (x,y,v) -> (a,b,c) (trivial).
2. (x,v,y) -> (a,b,c).
3. (y,x,v) -> (a,b,c) (transpose).
4. (y,v,x) -> (a,b,c).
5. (v,x,y) -> (a,b,c).
6. (v,y,x) -> (a,b,c).
A set of squares with selected parastrophic transformation R forms one of 6 parastrophic slices. Diagonal Latin squares with a generalized symmetry are a special case of generalized symmetries in parastrophic slice # 1. Diagonal Latin squares with generalized symmetries in parastrophic slices are rare; usually they have a large number of transversals, orthogonal mates, etc.
For all orders in which diagonal Latin squares exist a(n) >= 1 due to the existence of the trivial generalized symmetry with code (1,1,1) in first parastrophic slice and Px=Py=Pv=e. - Eduard I. Vatutin, Jan 24 2023, updated Mar 25 2023
The set of generalized symmetries is a subset of the generalized symmetries in parastrophic slices, so A357473(n) <= a(n). - Eduard I. Vatutin, Jan 25 2023
Orthogonal diagonal Latin squares are a subset of diagonal Latin squares, so A358891(n) <= a(n). - Eduard I. Vatutin, Jan 28 2023

Examples

			For order n=4 there are 5 different multisets L(P) with codes listed below in format "code - multiset":
  1 - {1,1,1,1},
  2 - {1,1,2},
  3 - {1,3},
  4 - {2,2},
  5 - {4}.
Diagonal Latin squares of order n=4 have a(4)=76 different types of generalized symmetries in parastrophic slices.
Slice 1 (10 generalized symmetries), R=(x,y,v):
  1. A=0123321010322301 (string representation of the square), Px=[0,1,2,3], Py=[0,1,2,3], Pv=[0,1,2,3] (trivial generalized symmetry), L(Px)={1,1,1,1,1}, L(Py)={1,1,1,1,1}, L(Pv)={1,1,1,1,1}, generalized symmetry type 1-(1,1,1).
  2. A=0123321010322301, Px=[0,1,2,3], Py=[1,0,3,2], Pv=[1,0,3,2], L(Px)={1,1,1,1}, L(Py)={2,2}, L(Pv)={2,2}, generalized symmetry type 1-(1,4,4).
  ...
  10. A=0123321010322301, Px=[1,2,3,0], Py=[2,3,1,0], Pv=[1,0,2,3], L(Px)={4}, L(Py)={4}, L(Pv)={1,1,2}, generalized symmetry type 1-(5,5,2).
Slice 2 (10 generalized symmetries), R=(x,v,y):
  11. A=0123321010322301, Px=[0,1,2,3], Py=[0,1,2,3], Pv=[0,1,2,3], L(Px)={1,1,1,1,1}, L(Py)={1,1,1,1,1}, L(Pv)={1,1,1,1,1}, generalized symmetry type 2-(1,1,1).
  12. A=0123321010322301, Px=[0,1,2,3], Py=[1,0,3,2], Pv=[1,0,3,2], L(Px)={1,1,1,1}, L(Py)={2,2}, L(Pv)={2,2}, generalized symmetry type 2-(1,4,4).
  ...
  20. A=0123321010322301, Px=[1,2,3,0], Py=[2,3,1,0], Pv=[1,0,2,3], L(Px)={4}, L(Py)={4}, L(Pv)={1,1,2}, generalized symmetry type 2-(5,5,2).
Slice 3 (14 generalized symmetries).
Slice 4 (14 generalized symmetries).
Slice 5 (14 generalized symmetries).
Slice 6 (14 generalized symmetries).
Total 10+10+14+14+14+14=76 generalized symmetries in parastrophic slices.
		

Crossrefs

Formula

a(n) <= 6*A000041(n)^3. - Eduard I. Vatutin, Dec 29 2022

A358891 Number of types of generalized symmetries in orthogonal diagonal Latin squares of order n in parastrophic slices.

Original entry on oeis.org

6, 0, 0, 76, 44, 0, 145
Offset: 1

Views

Author

Eduard I. Vatutin, Dec 05 2022

Keywords

Comments

An orthogonal diagonal Latin square is a square that has at least one orthogonal diagonal mate.
A diagonal Latin square A has a generalized symmetry (automorphism) if for all cells A[x][y] = v and A[x'][y'] = v' the relation is satisfied: x' = Px[x], y' = Py[y], v' = Pv[v], where Px, Py and Pv are some permutations that describe generalized symmetry (automorphism). In view of the possibility of an equivalent permutation of the rows and columns of the square and the corresponding transformations in permutations Px, Py and Pv, it is not the types of permutations that are important, but the structure of the multisets L(P) of cycle lengths in them (number of different multisets of order n is A000041). In view of this, codes of various generalized symmetries can be described by the types like (1,1,1) (trivial), (1,16,16) and so on (see example). A diagonal Latin square A has a generalized symmetry in parastrophic slices if for all cells A[x][y] = v and A[a'][b'] = c' the relation is satisfied: (a',b',c') = R(Px[x],Py[y],Pv[v]), where R is one of 6 possible parastrophic transformations:
1. (x,y,v) -> (a,b,c) (trivial).
2. (x,v,y) -> (a,b,c).
3. (y,x,v) -> (a,b,c) (transpose).
4. (y,v,x) -> (a,b,c).
5. (v,x,y) -> (a,b,c).
6. (v,y,x) -> (a,b,c).
A set of squares with selected parastrophic transformation R forms one of 6 parastrophic slices. Diagonal Latin squares with a generalized symmetry are a special case of generalized symmetries in parastrophic slice # 1. Diagonal Latin squares with generalized symmetries in parastrophic slices are rare; usually they have a large number of transversals, orthogonal mates, etc.
a(8) >= 3874, a(9) >= 8907, a(10) >= 3592.
a(n) <= 6*A000041(n)^3. - Eduard I. Vatutin, Jan 01 2023
For all orders in which orthogonal diagonal Latin squares exist a(n) >= 1 due to the existence of the trivial generalized symmetry with code (1,1,1) in first parastrophic slice and Px=Py=Pv=e. - Eduard I. Vatutin, Jan 24 2023, updated Mar 25 2023
The set of generalized symmetries is a subset of the generalized symmetries in parastrophic slices, so A358394(n) <= a(n). - Eduard I. Vatutin, Jan 25 2023
Orthogonal diagonal Latin squares are a subset of diagonal Latin squares, so a(n) <= A358515(n). - Eduard I. Vatutin, Jan 28 2023

Examples

			For order n=4 there are 5 different multisets L(P) with codes listed below in format "code - multiset":
  1 - {1,1,1,1},
  2 - {1,1,2},
  3 - {1,3},
  4 - {2,2},
  5 - {4}.
Diagonal Latin squares of order n=4 have a(4)=76 different types of generalized symmetries in parastrophic slices.
Slice 1 (10 generalized symmetries), R=(x,y,v):
  1. A=0123321010322301 (string representation of the square), Px=[0,1,2,3], Py=[0,1,2,3], Pv=[0,1,2,3] (trivial generalized symmetry), L(Px)={1,1,1,1,1}, L(Py)={1,1,1,1,1}, L(Pv)={1,1,1,1,1}, generalized symmetry type 1-(1,1,1).
  2. A=0123321010322301, Px=[0,1,2,3], Py=[1,0,3,2], Pv=[1,0,3,2], L(Px)={1,1,1,1}, L(Py)={2,2}, L(Pv)={2,2}, generalized symmetry type 1-(1,4,4).
  ...
  10. A=0123321010322301, Px=[1,2,3,0], Py=[2,3,1,0], Pv=[1,0,2,3], L(Px)={4}, L(Py)={4}, L(Pv)={1,1,2}, generalized symmetry type 1-(5,5,2).
Slice 2 (10 generalized symmetries), R=(x,v,y):
  11. A=0123321010322301, Px=[0,1,2,3], Py=[0,1,2,3], Pv=[0,1,2,3], L(Px)={1,1,1,1,1}, L(Py)={1,1,1,1,1}, L(Pv)={1,1,1,1,1}, generalized symmetry type 2-(1,1,1).
  12. A=0123321010322301, Px=[0,1,2,3], Py=[1,0,3,2], Pv=[1,0,3,2], L(Px)={1,1,1,1}, L(Py)={2,2}, L(Pv)={2,2}, generalized symmetry type 2-(1,4,4).
  ...
  20. A=0123321010322301, Px=[1,2,3,0], Py=[2,3,1,0], Pv=[1,0,2,3], L(Px)={4}, L(Py)={4}, L(Pv)={1,1,2}, generalized symmetry type 2-(5,5,2).
Slice 3 (14 generalized symmetries).
Slice 4 (14 generalized symmetries).
Slice 5 (14 generalized symmetries).
Slice 6 (14 generalized symmetries).
Total 10+10+14+14+14+14=76 generalized symmetries in parastrophic slices.
		

Crossrefs

Showing 1-8 of 8 results.