A293777
Number of centrally symmetric diagonal Latin squares of order n with the first row in ascending order.
Original entry on oeis.org
1, 0, 0, 2, 8, 0, 2816, 135168, 327254016
Offset: 1
0 1 2 3 4 5 6 7 8
6 3 0 2 7 8 1 4 5
3 2 1 8 6 7 0 5 4
7 8 6 5 1 3 4 0 2
8 6 4 7 2 0 5 3 1
2 7 5 6 8 4 3 1 0
5 4 7 0 3 1 8 2 6
4 5 8 1 0 2 7 6 3
1 0 3 4 5 6 2 8 7
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- Eduard I. Vatutin, On the interconnection between double and central symmetries in diagonal Latin squares (in Russian).
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, V. S. Titov, Properties of central symmetry for diagonal Latin squares, High-performance computing systems and technologies, No. 1 (8), 2018, pp. 74-78. (in Russian)
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, V. S. Titov, Central Symmetry Properties for Diagonal Latin Squares, Problems of Information Technology, No. 2, 2019, pp. 3-8. doi: 10.25045/jpit.v10.i2.01.
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles
A292517
Number of doubly symmetric diagonal Latin squares of order 4n.
Original entry on oeis.org
48, 495452160, 38903149816763645952000, 127654439655255918929515331054014121902080000
Offset: 1
Doubly symmetric diagonal Latin square example:
0 1 2 3 4 5 6 7
3 2 7 6 1 0 5 4
2 3 1 0 7 6 4 5
6 7 5 4 3 2 0 1
7 6 3 2 5 4 1 0
4 5 0 1 6 7 2 3
5 4 6 7 0 1 3 2
1 0 4 5 2 3 7 6
In the horizontal direction there is a one-to-one correspondence between elements 0 and 7, 1 and 6, 2 and 5, 3 and 4.
In the vertical direction there is also a correspondence between elements 0 and 1, 2 and 4, 6 and 7, 3 and 5.
- A. D. Belyshev, Proof that the order of a doubly symmetric diagonal Latin squares is a multiple of 4, 2017 (in Russian)
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru, corrected value a(4) (in Russian).
- Eduard I. Vatutin, On the interconnection between double and central symmetries in diagonal Latin squares (in Russian).
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, On Some Features of Symmetric Diagonal Latin Squares, CEUR WS, vol. 1940 (2017), pp. 74-79.
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares, Proceedings of the 10th multiconference on control problems (2017), vol. 3, pp. 17-19. (in Russian)
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares. Working on errors, Intellectual and Information Systems (2017), pp. 30-36. (in Russian)
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Index entries for sequences related to Latin squares and rectangles
A340546
Number of main classes of diagonal Latin squares of order 2n that contain a one-plane symmetric square.
Original entry on oeis.org
A horizontally symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 0 5 3 1
5 4 3 2 1 0
2 5 4 1 0 3
3 0 1 4 5 2
1 3 5 0 2 4
A vertically symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 5 0 3 1
3 5 1 2 0 4
5 3 0 4 1 2
2 4 3 1 5 0
1 0 4 5 2 3
Both are one-plane symmetric diagonal Latin squares.
A340545
Number of main classes of centrally symmetric diagonal Latin squares of order n.
Original entry on oeis.org
1, 0, 0, 1, 2, 0, 32, 301, 430090
Offset: 1
For n=4 there is a single CF:
0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2
so a(4)=1.
For n=5 there are two different CFs:
0 1 2 3 4 0 1 2 3 4
2 3 4 0 1 1 3 4 2 0
4 0 1 2 3 4 2 1 0 3
1 2 3 4 0 2 0 3 4 1
3 4 0 1 2 3 4 0 1 2
so a(5)=2.
Example of a centrally symmetric diagonal Latin square of order n=9:
0 1 2 3 4 5 6 7 8
6 3 0 2 7 8 1 4 5
3 2 1 8 6 7 0 5 4
7 8 6 5 1 3 4 0 2
8 6 4 7 2 0 5 3 1
2 7 5 6 8 4 3 1 0
5 4 7 0 3 1 8 2 6
4 5 8 1 0 2 7 6 3
1 0 3 4 5 6 2 8 7
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, and V. S. Titov, Properties of central symmetry for diagonal Latin squares, High-performance computing systems and technologies, No. 1 (8), 2018, pp. 74-78. (in Russian)
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, and V. S. Titov, Central Symmetry Properties for Diagonal Latin Squares, Problems of Information Technology, No. 2, 2019, pp. 3-8. doi: 10.25045/jpit.v10.i2.01.
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- E. I. Vatutin, About the number of main classes of centrally symmetric diagonal Latin squares of orders 1-9 (in Russian).
- Eduard I. Vatutin, On the interconnection between double and central symmetries in diagonal Latin squares (in Russian).
- Index entries for sequences related to Latin squares and rectangles.
Showing 1-4 of 4 results.
Comments