cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293857 a(n) is the number of permutations {c_1..c_n} of {1..n} for which c_1 - c_2 + ... + (-1)^(n-1)*c_n are squares.

Original entry on oeis.org

1, 1, 1, 4, 12, 36, 144, 1440, 9216, 66240, 504000, 7344000, 73612800, 830995200, 9373190400, 181875456000, 2474319052800, 38246274662400, 572552876851200, 13783143886848000, 237527801118720000, 4658378696294400000, 86818505051013120000, 2488457229932298240000
Offset: 0

Views

Author

Vladimir Shevelev, Oct 17 2017

Keywords

Comments

For a permutation C = {c_1..c_n} of {1..n}, set s(C) = c_1 - c_2 + ... + (-1)^(n-1)*c_n. Then max s(C) is square that is (ceil(n/2))^2 or A008794(n+1).
a(n)/n! is slowly and non-monotonically decreasing: 1, 1/2, 2/3, 1/2, 3/10, 1/5, 2/7, 8/35, 23/126, 5/36, 85/462, 71/462, ... .
Positions for which a(n) divisible by all primes <= n: 1, 4, 10, ... .
The smallest primes <= n not dividing a(n) or 0 if there is no such primes: 0, 2, 3, 0, 5, 5, 7, 5, 7, 0, 7, 7, ... .
Let k = floor(n / 2). Then a(n) = divisible by k! * (n-k)!. - David A. Corneth, Oct 18 2017. (For a proof, cf. comment in A293984. - Vladimir Shevelev, Nov 06 2017)

Examples

			Let n=3. For a permutation C={c_1,c_2,c_3}, set s = s(C) = c_1 - c_2 + c_3. We have the permutations:
1,2,3; s=2
1,3,2; s=0
2,1,3; s=4
2,3,1; s=0
3,1,2; s=4
3,2,1; s=2
Here there are 4 permutations for which {s} are squares. So a(3)=4.
		

Crossrefs

Programs

  • Maple
    b:= proc(p, m, s) option remember; (n-> `if`(n=0, `if`(issqr(s), 1, 0),
          `if`(p>0, b(p-1, m, s+n), 0)+`if`(m>0, b(p, m-1, s-n), 0)))(p+m)
        end:
    a:= n-> (t-> b(n-t, t, 0)*t!*(n-t)!)(iquo(n, 2)):
    seq(a(n), n=0..28);  # Alois P. Heinz, Sep 17 2020
  • Mathematica
    a293857=Table[Total[(Floor[n/2]!*(n-Floor[n/2])!)(Reverse[Map[SeriesCoefficient[QBinomial[n,Floor[(n+1)/2],q],{q,0,#}]&,Map[2#(Floor[(n+1)/2] - #)&,Range[0,Floor[(n+1)/4]]]]]
    )],{n,25}] (* Peter J. C. Moses, Nov 01 2017 *)

Formula

From author's comment in A008794 it follows that a(n) >= A010551(n).

Extensions

a(5)-a(12) from Peter J. C. Moses, Oct 17 2017
a(13)-a(23) from David A. Corneth, Oct 17 2017
a(0)=1 prepended by Alois P. Heinz, Sep 17 2020