A293857 a(n) is the number of permutations {c_1..c_n} of {1..n} for which c_1 - c_2 + ... + (-1)^(n-1)*c_n are squares.
1, 1, 1, 4, 12, 36, 144, 1440, 9216, 66240, 504000, 7344000, 73612800, 830995200, 9373190400, 181875456000, 2474319052800, 38246274662400, 572552876851200, 13783143886848000, 237527801118720000, 4658378696294400000, 86818505051013120000, 2488457229932298240000
Offset: 0
Keywords
Examples
Let n=3. For a permutation C={c_1,c_2,c_3}, set s = s(C) = c_1 - c_2 + c_3. We have the permutations: 1,2,3; s=2 1,3,2; s=0 2,1,3; s=4 2,3,1; s=0 3,1,2; s=4 3,2,1; s=2 Here there are 4 permutations for which {s} are squares. So a(3)=4.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 0..200
Programs
-
Maple
b:= proc(p, m, s) option remember; (n-> `if`(n=0, `if`(issqr(s), 1, 0), `if`(p>0, b(p-1, m, s+n), 0)+`if`(m>0, b(p, m-1, s-n), 0)))(p+m) end: a:= n-> (t-> b(n-t, t, 0)*t!*(n-t)!)(iquo(n, 2)): seq(a(n), n=0..28); # Alois P. Heinz, Sep 17 2020
-
Mathematica
a293857=Table[Total[(Floor[n/2]!*(n-Floor[n/2])!)(Reverse[Map[SeriesCoefficient[QBinomial[n,Floor[(n+1)/2],q],{q,0,#}]&,Map[2#(Floor[(n+1)/2] - #)&,Range[0,Floor[(n+1)/4]]]]] )],{n,25}] (* Peter J. C. Moses, Nov 01 2017 *)
Extensions
a(5)-a(12) from Peter J. C. Moses, Oct 17 2017
a(13)-a(23) from David A. Corneth, Oct 17 2017
a(0)=1 prepended by Alois P. Heinz, Sep 17 2020
Comments