cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A324428 Number T(n,k) of labeled cyclic chord diagrams with n chords such that every chord has length at least k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 3, 1, 15, 4, 1, 105, 31, 7, 1, 945, 293, 68, 11, 1, 10395, 3326, 837, 159, 18, 1, 135135, 44189, 11863, 2488, 381, 29, 1, 2027025, 673471, 189503, 43169, 7601, 879, 47, 1, 34459425, 11588884, 3377341, 822113, 160784, 23559, 2049, 76, 1, 654729075, 222304897, 66564396, 17066007, 3621067, 607897, 72989, 4788, 123, 1
Offset: 1

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with 1 <= k <= n. T(n,0) = A001147(n), T(0,k) = 1, T(n,k) = 0 for k > n > 0.

Examples

			Triangle T(n,k) begins:
        1;
        3,      1;
       15,      4,      1;
      105,     31,      7,     1;
      945,    293,     68,    11,    1;
    10395,   3326,    837,   159,   18,   1;
   135135,  44189,  11863,  2488,  381,  29,  1;
  2027025, 673471, 189503, 43169, 7601, 879, 47, 1;
  ...
		

Crossrefs

T(n,n-1) gives A000204.

Programs

  • Maple
    b:= proc(n, f, m, l, j) option remember; (k-> `if`(n `if`(n=0 or k<2, doublefactorial(2*n-1),
                  b(2*n-k+1, [1$k-1], 0, [0$k-1], k-1)):
    seq(seq(T(n, k), k=1..n), n=1..10);
  • Mathematica
    b[n_, f_List, m_, l_List, j_] := b[n, f, m, l, j] = Function[k, If[n < Total[f] + m + Total[l], 0, If[n == 0, 1, Sum[If[f[[i]] == 0, 0, b[n - 1, ReplacePart[f, i -> 0], m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]],{i, Max[1, j + 1], Min[k, n - 1]}] + If[m == 0, 0, m*b[n - 1, f, m - 1 + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]] + b[n - 1, f, m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 1], Max[0, j - 1]]]]][Length[l]];
    T[n_, k_] := If[n == 0 || k < 2, 2^(n-1) Pochhammer[3/2, n-1], b[2n-k+1, Table[1, {k-1}], 0, Table[0, {k-1}], k-1]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{j=k..n} A324429(n,j).

A324429 Number T(n,k) of labeled cyclic chord diagrams having n chords and minimal chord length k (or k=0 if n=0); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 11, 3, 1, 0, 74, 24, 6, 1, 0, 652, 225, 57, 10, 1, 0, 7069, 2489, 678, 141, 17, 1, 0, 90946, 32326, 9375, 2107, 352, 28, 1, 0, 1353554, 483968, 146334, 35568, 6722, 832, 46, 1, 0, 22870541, 8211543, 2555228, 661329, 137225, 21510, 1973, 75, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with 0 <= k <= n. T(n,k) = 0 for k > n.

Examples

			Triangle T(n,k) begins:
  1;
  0,       1;
  0,       2,      1;
  0,      11,      3,      1;
  0,      74,     24,      6,     1;
  0,     652,    225,     57,    10,    1;
  0,    7069,   2489,    678,   141,   17,   1;
  0,   90946,  32326,   9375,  2107,  352,  28,  1;
  0, 1353554, 483968, 146334, 35568, 6722, 832, 46, 1;
  ...
		

Crossrefs

Row sums give A001147.
Main diagonal gives A000012.
T(n+1,n) gives A001610.

Programs

  • Maple
    b:= proc(n, f, m, l, j) option remember; (k-> `if`(n `if`(n=0 or k<2, doublefactorial(2*n-1),
                  b(2*n-k+1, [1$k-1], 0, [0$k-1], k-1)):
    T:= (n, k)-> `if`(n=k, 1, A(n, k)-A(n, k+1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, f_List, m_, l_List, j_] := b[n, f, m, l, j] = Function[k, If[n < Total[f] + m +  Total[l], 0, If[n == 0, 1, Sum[If[f[[i]] == 0, 0, b[n - 1, ReplacePart[f, i -> 0], m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]], {i, Max[1, j + 1], Min[k, n - 1]}] + If[m == 0, 0, m*b[n - 1, f, m - 1 + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j-1]]] + b[n-1, f, m + l[[1]], Append[ReplacePart[ l, 1 -> Nothing], 1], Max[0, j - 1]]]]][Length[l]];
    A[n_, k_] := If[n == 0 || k < 2, 2^(n-1) Pochhammer[3/2, n-1], b[2n-k+1, Table[1, {k - 1}], 0, Table[0, {k - 1}], k - 1]];
    T[n_, k_] := If[n == k, 1, A[n, k] - A[n, k + 1]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)

Formula

T(n,k) = A324428(n,k) - A324428(n,k+1) for k > 0, T(n,0) = A000007(n).

A293157 Triangle read by rows: T(n,k) = number of linear chord diagrams with n chords such that every chord has length at least k (1 <= k <= n).

Original entry on oeis.org

1, 3, 1, 15, 5, 1, 105, 36, 10, 1, 945, 329, 99, 20, 1, 10395, 3655, 1146, 292, 40, 1, 135135, 47844, 15422, 4317, 876, 80, 1, 2027025, 721315, 237135, 69862, 16924, 2628, 160, 1, 34459425, 12310199, 4106680, 1251584, 332507, 67404, 7884, 320, 1, 654729075, 234615096, 79154927, 24728326, 6944594, 1627252, 269616, 23652, 640, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 10 2017

Keywords

Comments

There is a surprising change in notation in Sullivan (2016) between Definition 1 and Table 1.
The first 11 columns are given in the reference.

Examples

			Triangle begins:
      1;
      3,    1;
     15,    5,    1;
    105,   36,   10,    1;
    945,  329,   99,   20,    1;
  10395, 3655, 1146,  292,   40,    1;
  ...
		

Crossrefs

Extensions

More terms from Alois P. Heinz, Oct 17 2017

A293961 Number T(n,k) of linear chord diagrams having n chords and maximal chord length k (or k=0 if n=0); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 4, 10, 0, 1, 10, 24, 70, 0, 1, 20, 82, 212, 630, 0, 1, 42, 300, 798, 2324, 6930, 0, 1, 84, 894, 3800, 10078, 30188, 90090, 0, 1, 170, 2744, 18186, 51804, 150046, 452724, 1351350, 0, 1, 340, 8594, 71624, 313006, 851692, 2545390, 7695828, 22972950
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2017

Keywords

Comments

All terms in columns k > 1 are even.

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,   2;
  0, 1,   4,   10;
  0, 1,  10,   24,    70;
  0, 1,  20,   82,   212,   630;
  0, 1,  42,  300,   798,  2324,   6930;
  0, 1,  84,  894,  3800, 10078,  30188,  90090;
  0, 1, 170, 2744, 18186, 51804, 150046, 452724, 1351350;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A057427, A167030(n+1).
Row sums give A001147.
Main diagonal gives A293962.
T(2n,n) gives A293963.

Formula

A(n,k) = A293960(n,k) - A293960(n,k-1) for k>0, A(n,0) = A000007(n).

A293914 Number of linear chord diagrams having n chords and minimal chord length one.

Original entry on oeis.org

1, 2, 10, 69, 616, 6740, 87291, 1305710, 22149226, 420113979, 8810083360, 202397302184, 5054993327385, 136370982998354, 3951907646699026, 122432049983991285, 4038019273764782056, 141261207847788852620, 5224370049771189478371, 203670050053447478737214
Offset: 1

Views

Author

Alois P. Heinz, Oct 19 2017

Keywords

Crossrefs

Column k=1 of A293881.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n, (4*n-6)*
          a(n-1)-2*(2*n^2-8*n+7)*a(n-2)-(2*n-5)*a(n-3))
        end:
    seq(a(n), n=1..25);

Formula

a(n) ~ (1 - exp(-1)) * 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Oct 25 2017

A293915 Number of linear chord diagrams having n chords and minimal chord length two.

Original entry on oeis.org

1, 4, 26, 230, 2509, 32422, 484180, 8203519, 155460169, 3257843351, 74802301553, 1867393802229, 50358879172771, 1458899632505052, 45185432509804438, 1489952528266230695, 52112346134820625126, 1926974225717684659004, 75110765705496454871866
Offset: 2

Views

Author

Alois P. Heinz, Oct 19 2017

Keywords

Crossrefs

Column k=2 of A293881.

Formula

Recurrence: (24*n^2 - 182*n + 339)*a(n) = (96*n^3 - 800*n^2 + 1894*n - 991)*a(n-1) - (96*n^4 - 824*n^3 + 1804*n^2 + 650*n - 3571)*a(n-2) + 2*(144*n^4 - 1788*n^3 + 8032*n^2 - 15489*n + 10821)*a(n-3) - 2*(144*n^4 - 2028*n^3 + 10452*n^2 - 23337*n + 18994)*a(n-4) + (96*n^4 - 1592*n^3 + 9452*n^2 - 23794*n + 21419)*a(n-5) + (96*n^3 - 1040*n^2 + 3550*n - 3841)*a(n-6) + (24*n^2 - 134*n + 181)*a(n-7). - Vaclav Kotesovec, Oct 25 2017
a(n) ~ (exp(-1) - exp(-2)) * 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Oct 25 2017

A293916 Number of linear chord diagrams having n chords and minimal chord length three.

Original entry on oeis.org

1, 9, 79, 854, 11105, 167273, 2855096, 54426601, 1146050151, 26418261876, 661704149855, 17894827830455, 519672858520861, 16129429179859894, 532839970205194270, 18667063990244959414, 691265187531408182336, 26979801565685043088417, 1106929654165005908000185
Offset: 3

Views

Author

Alois P. Heinz, Oct 19 2017

Keywords

Crossrefs

Column k=3 of A293881.

Formula

a(n) ~ (exp(-2) - exp(-3)) * 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Oct 25 2017

A293917 Number of linear chord diagrams having n chords and minimal chord length four.

Original entry on oeis.org

1, 19, 252, 3441, 52938, 919077, 17783732, 379205917, 8832657552, 223147872970, 6078406509776, 177602480890788, 5541376133638552, 183896037042429100, 6468180930063929404, 240368899912444102612, 9410883311417206598912, 387192534875365889313239
Offset: 4

Views

Author

Alois P. Heinz, Oct 19 2017

Keywords

Crossrefs

Column k=4 of A293881.

Formula

a(n) ~ (exp(-3) - exp(-4)) * 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Oct 25 2017

A293918 Number of linear chord diagrams having n chords and minimal chord length five.

Original entry on oeis.org

1, 39, 796, 14296, 265103, 5317342, 116235247, 2760729582, 70870525294, 1956309944351, 57803029075220, 1820704829013410, 60915564036123607, 2157741151756229543, 80681075613289079236, 3176017007139110899224, 131302895736890434892224, 5688257327967598478393309
Offset: 5

Views

Author

Alois P. Heinz, Oct 19 2017

Keywords

Crossrefs

Column k=5 of A293881.

Formula

a(n) ~ (exp(-4) - exp(-5)) * 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Oct 25 2017

A293919 Number of linear chord diagrams having n chords and minimal chord length six.

Original entry on oeis.org

1, 79, 2468, 59520, 1357636, 31817497, 788783482, 20863949689, 589285383470, 17736904863864, 567344416149454, 19230190154966409, 688795573160438196, 26004353625119063230, 1032308832642494976585, 42994854622890093855000, 1874878774341679655658359
Offset: 6

Views

Author

Alois P. Heinz, Oct 19 2017

Keywords

Crossrefs

Column k=6 of A293881.

Formula

a(n) ~ (exp(-5) - exp(-6)) * 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Oct 25 2017
Showing 1-10 of 16 results. Next