cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A293881 Number T(n,k) of linear chord diagrams having n chords and minimal chord length k (or k=0 if n=0); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 10, 4, 1, 0, 69, 26, 9, 1, 0, 616, 230, 79, 19, 1, 0, 6740, 2509, 854, 252, 39, 1, 0, 87291, 32422, 11105, 3441, 796, 79, 1, 0, 1305710, 484180, 167273, 52938, 14296, 2468, 159, 1, 0, 22149226, 8203519, 2855096, 919077, 265103, 59520, 7564, 319, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2017

Keywords

Comments

Conjecture: column k>0 is asymptotic to (exp(-k+1) - exp(-k)) * 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Oct 25 2017

Examples

			Triangle T(n,k) begins:
  1;
  0,       1;
  0,       2,      1;
  0,      10,      4,      1;
  0,      69,     26,      9,     1;
  0,     616,    230,     79,    19,     1;
  0,    6740,   2509,    854,   252,    39,    1;
  0,   87291,  32422,  11105,  3441,   796,   79,   1;
  0, 1305710, 484180, 167273, 52938, 14296, 2468, 159,  1;
  ...
		

Crossrefs

Row sums give A001147.
T(2n,n) gives A290688.
Main diagonal and first lower diagonal give: A000012, A054135 (for n>0).

A293960 Number A(n,k) of linear chord diagrams having n chords and no chord length larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 5, 1, 0, 1, 1, 3, 15, 11, 1, 0, 1, 1, 3, 15, 35, 21, 1, 0, 1, 1, 3, 15, 105, 103, 43, 1, 0, 1, 1, 3, 15, 105, 315, 343, 85, 1, 0, 1, 1, 3, 15, 105, 945, 1141, 979, 171, 1, 0, 1, 1, 3, 15, 105, 945, 3465, 4779, 2915, 341, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2017

Keywords

Comments

All terms in columns k > 0 are odd.

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,    1,     1,     1,      1, ...
  0, 1,  1,   1,    1,     1,     1,      1, ...
  0, 1,  3,   3,    3,     3,     3,      3, ...
  0, 1,  5,  15,   15,    15,    15,     15, ...
  0, 1, 11,  35,  105,   105,   105,    105, ...
  0, 1, 21, 103,  315,   945,   945,    945, ...
  0, 1, 43, 343, 1141,  3465, 10395,  10395, ...
  0, 1, 85, 979, 4779, 14857, 45045, 135135, ...
		

Crossrefs

Main diagonal gives A001147.
Cf. A293961.

Formula

A(n,k) = Sum_{j=0..k} A293961(n,j).
A(n,k) = A(n,n) = A001147(n) for k >= n.

A293962 Number of linear chord diagrams having n chords and maximal chord length n, a(0)=1.

Original entry on oeis.org

1, 1, 2, 10, 70, 630, 6930, 90090, 1351350, 22972950, 436486050, 9166207050, 210822762150, 5270569053750, 142305364451250, 4126855569086250, 127932522641673750, 4221773247175233750, 147762063651133181250, 5467196355091927706250, 213220657848585180543750
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2017

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 1, 2][n+1],
          (2*n-1)*a(n-1))
        end:
    seq(a(n), n=0..20);

Formula

E.g.f.: (x + 1 + 2/sqrt(1-2*x))/3.
a(n) = (2*n-1)*a(n-1) for n > 2, a(0) = a(1) = 1, a(2) = 2.
a(n) = 2/3 * A001147(n) = 2/3 * (2n-1)!! for n>1.
a(n) = A293961(n,n).

A293963 Number of linear chord diagrams having 2n chords and maximal chord length n, a(0)=1.

Original entry on oeis.org

1, 1, 10, 300, 18186, 1838508, 278873238, 59240617044, 16785089537034, 6116748053227032, 2787180218661133026, 1552687010566633714620, 1038232662085139704575042, 820642288423711927490012112, 756912885595843667978969686938, 805677646550729982087279165847716
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2017

Keywords

Crossrefs

Cf. A293961.

Formula

a(n) = A293961(2n,n).
Showing 1-4 of 4 results.