A293984 a(n) = A293857(n)/A010551(n).
1, 1, 1, 2, 3, 3, 4, 10, 16, 23, 35, 85, 142, 229, 369, 895, 1522, 2614, 4348, 10467, 18038, 32160, 54488, 130148, 226594, 414130, 710880, 1685496, 2958666, 5503780, 9544629, 22476690, 39724867, 74884360, 130949625, 306457174, 544777361, 1037587152, 1827129712
Offset: 0
Keywords
Links
- Peter J. C. Moses, Table of n, a(n) for n = 0..250
Programs
-
Maple
b:= proc(p, m, s) option remember; (n-> `if`(n=0, `if`(issqr(s), 1, 0), `if`(p>0, b(p-1, m, s+n), 0)+`if`(m>0, b(p, m-1, s-n), 0)))(p+m) end: a:= n-> (t-> b(n-t, t, 0))(iquo(n, 2)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 17 2020
-
Mathematica
a293984=Table[ possibleSums=Range[1/2-(-1)^n/2-Floor[n/2]^2,Floor[(n+1)/2]^2]; filteredSums=Select[possibleSums,IntegerQ[Sqrt[#]]&]; positions=Map[Flatten[{#,Position[possibleSums,#,1]-1}]&,filteredSums]; Total[Map[SeriesCoefficient[QBinomial[n,Floor[(n+1)/2],q],{q,0,#[[2]]/2}]&,positions]],{n,20}] (* Peter J. C. Moses, Nov 05 2017 *)
Extensions
a(13)-a(30) from David A. Corneth, Oct 21 2017; a(31)-a(38) from Peter J. C. Moses, Nov 02 2017
a(0)=1 prepended by Alois P. Heinz, Sep 17 2020
Comments