A294105 Number of compositions (ordered partitions) of n into squares dividing n.
1, 1, 1, 1, 2, 1, 1, 1, 7, 2, 1, 1, 26, 1, 1, 1, 96, 1, 12, 1, 345, 1, 1, 1, 1252, 2, 1, 76, 4544, 1, 1, 1, 17473, 1, 1, 1, 127654, 1, 1, 1, 217286, 1, 1, 1, 788674, 2490, 1, 1, 3182706, 2, 28, 1, 10390321, 1, 14128, 1, 37713313, 1, 1, 1, 136886433, 1, 1, 80396, 579739960, 1, 1, 1, 1803399103, 1, 1
Offset: 0
Keywords
Examples
a(8) = 7 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are squares {1, 4} therefore we have [4, 4], [4, 1, 1, 1, 1], [1, 4, 1, 1, 1], [1, 1, 4, 1, 1], [1, 1, 1, 4, 1], [1, 1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1, 1].
Links
Programs
-
Maple
a:= proc(n) option remember; local b, l; l, b:= select(issqr, numtheory[divisors](n)), proc(m) option remember; `if`(m=0, 1, add(`if`(j>m, 0, b(m-j)), j=l)) end; b(n) end: seq(a(n), n=0..50); # Alois P. Heinz, Oct 30 2017
-
Mathematica
Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] == 0 && IntegerQ[k^(1/2)]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 70}]