cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294105 Number of compositions (ordered partitions) of n into squares dividing n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 7, 2, 1, 1, 26, 1, 1, 1, 96, 1, 12, 1, 345, 1, 1, 1, 1252, 2, 1, 76, 4544, 1, 1, 1, 17473, 1, 1, 1, 127654, 1, 1, 1, 217286, 1, 1, 1, 788674, 2490, 1, 1, 3182706, 2, 28, 1, 10390321, 1, 14128, 1, 37713313, 1, 1, 1, 136886433, 1, 1, 80396, 579739960, 1, 1, 1, 1803399103, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 28 2017

Keywords

Examples

			a(8) = 7 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are squares {1, 4} therefore we have [4, 4], [4, 1, 1, 1, 1], [1, 4, 1, 1, 1], [1, 1, 4, 1, 1], [1, 1, 1, 4, 1], [1, 1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local b, l;
          l, b:= select(issqr, numtheory[divisors](n)),
          proc(m) option remember; `if`(m=0, 1,
             add(`if`(j>m, 0, b(m-j)), j=l))
          end; b(n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 30 2017
  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] == 0 && IntegerQ[k^(1/2)]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 70}]