A294146 Sum of the larger parts of the partitions of n into two parts with smaller part squarefree.
0, 1, 2, 5, 7, 12, 15, 18, 21, 29, 33, 43, 48, 60, 66, 72, 78, 84, 90, 106, 113, 131, 139, 147, 155, 176, 185, 208, 218, 243, 254, 265, 276, 304, 316, 328, 340, 371, 384, 397, 410, 444, 458, 494, 509, 547, 563, 579, 595, 611, 627, 669, 686, 703, 720, 737
Offset: 1
Links
Programs
-
Mathematica
Table[Sum[(n - i)*MoebiusMu[i]^2, {i, Floor[n/2]}], {n, 80}] Table[Total[Select[IntegerPartitions[n,{2}],SquareFreeQ[#[[2]]]&][[;;,1]]],{n,70}] (* Harvey P. Dale, Mar 23 2023 *)
Formula
a(n) = Sum_{i=1..floor(n/2)} (n - i) * mu(i)^2, where mu is the Möbius function (A008683).
Comments