cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294259 a(n) = n*(n^3 + 2*n^2 - 5*n + 10)/8.

Original entry on oeis.org

0, 1, 4, 15, 43, 100, 201, 364, 610, 963, 1450, 2101, 2949, 4030, 5383, 7050, 9076, 11509, 14400, 17803, 21775, 26376, 31669, 37720, 44598, 52375, 61126, 70929, 81865, 94018, 107475, 122326, 138664, 156585, 176188, 197575, 220851, 246124, 273505, 303108, 335050, 369451
Offset: 0

Views

Author

Bruno Berselli, Oct 30 2017

Keywords

Comments

a(n) is even for n in A047481.
Also, a(n) is divisible by 5 if and only if n belongs to A047218.

Examples

			After 0:
1   =                     -(0) + (1);
4   =                 -(0 + 1) + (2 + 2*3/2);
15  =             -(0 + 1 + 2) + (3 + 4 + 5 + 3*4/2);
43  =         -(0 + 1 + 2 + 3) + (4 + 5 + 6 + 7 + 8 + 9 + 4*5/2);
100 =     -(0 + 1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 14 + 5*6/2);
201 = -(0 + 1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 20 + 6*7/2), etc.
		

Crossrefs

Cf. A101374: the sums in the Example section end in squares.
Subsequence of A047207.

Programs

  • GAP
    List([0..50], n -> n*(n^3+2*n^2-5*n+10)/8);
  • Magma
    [n*(n^3+2*n^2-5*n+10)/8: n in [0..50]];
    
  • Maple
    a := n -> n*(n*(n*(n+2)-5)+10)/8: seq(a(n),n=0..41); # Peter Luschny, Nov 06 2017
  • Mathematica
    Table[n (n^3 + 2 n^2 - 5 n + 10)/8, {n, 0, 50}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,4,15,43},50] (* Harvey P. Dale, Jan 08 2024 *)
  • Maxima
    makelist(n*(n^3+2*n^2-5*n+10)/8, n, 0, 50);
    
  • PARI
    vector(50, n, n--; n*(n^3+2*n^2-5*n+10)/8)
    
  • Sage
    [n*(n^3+2*n^2-5*n+10)/8 for n in range(50)]
    

Formula

O.g.f.: x*(1 - x + 5*x^2 - 2*x^3)/(1 - x)^5.
E.g.f.: x*(8 + 8*x + 8*x^2 + x^3)*exp(x)/8.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
a(n) = 2*n + Sum_{i=0..n} i*(i^2 - 3)/2.