cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294286 Sum of the squares of the parts in the partitions of n into two distinct parts.

Original entry on oeis.org

0, 0, 5, 10, 30, 46, 91, 124, 204, 260, 385, 470, 650, 770, 1015, 1176, 1496, 1704, 2109, 2370, 2870, 3190, 3795, 4180, 4900, 5356, 6201, 6734, 7714, 8330, 9455, 10160, 11440, 12240, 13685, 14586, 16206, 17214, 19019, 20140, 22140, 23380, 25585, 26950, 29370
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Examples

			For n = 6, there are two ways of partitioning 6 into two distinct parts: 6 = 1+5 and 6 = 2+4.  So a(6) = 1^2 + 5^2 + 2^2 + 4^2 = 46.
For n = 7, there are three ways of partitioning 7 into two distinct parts: 7 = 1+6, 7 = 2+5, and 7 = 3+4.  So a(7) = 1^2 + 6^2 + 2^2 + 5^2 + 3^2 + 4^2 = 91. - _Michael B. Porter_, Nov 05 2017
		

Crossrefs

Cf. A000330.

Programs

  • Magma
    [n*(2*n^2-3*n*(5+(-1)^n)/4+1)/6 : n in [1..60]]; // Wesley Ivan Hurt, Dec 03 2023
  • Mathematica
    Table[Sum[i^2 + (n - i)^2, {i, Floor[(n-1)/2]}], {n, 40}]
    Table[Total[Flatten[Select[IntegerPartitions[n,{2}],#[[1]]!=#[[2]]&]]^2],{n,50}] (* Harvey P. Dale, Dec 02 2022 *)
  • PARI
    first(n) = my(res = vector(n, i, i^3 / 3 - i^2 / 2 + i / 6)); forstep(i = 2, n, 2, res[i] -= i^2 >> 2); res \\ David A. Corneth, Oct 27 2017
    
  • PARI
    concat(vector(2), Vec(x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3) + O(x^60))) \\ Colin Barker, Nov 04 2017
    

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} i^2 + (n-i)^2.
From David A. Corneth, Oct 27 2017: (Start)
For odd n, a(n) = n^3/3 - n^2/2 + n/6 = A000330(n + 1).
For even n, a(n) = n^3/3 - 3*n^2/4 + n/6.
(End)
From Colin Barker, Nov 04 2017: (Start)
G.f.: x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7.
(End)
a(n) = n*(2*n^2-3*n*(5+(-1)^n)/4+1)/6. - Wesley Ivan Hurt, Dec 03 2023