cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294287 Sum of the cubes of the parts in the partitions of n into two distinct parts.

Original entry on oeis.org

0, 0, 9, 28, 100, 198, 441, 720, 1296, 1900, 3025, 4140, 6084, 7938, 11025, 13888, 18496, 22680, 29241, 35100, 44100, 52030, 64009, 74448, 90000, 103428, 123201, 140140, 164836, 185850, 216225, 241920, 278784, 309808, 354025, 391068, 443556, 487350, 549081
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Crossrefs

Cf. A294270.

Programs

  • Mathematica
    Table[Sum[i^3 + (n - i)^3, {i, Floor[(n-1)/2]}], {n, 40}]
  • PARI
    first(n) = my(res = vector(n, i, binomial(i,2)^2)); forstep(i=2, n, 2, res[i] -= i^3/8); res \\ David A. Corneth, Oct 27 2017
    
  • PARI
    a(n) = sum(i=1, (n-1)\2, i^3 + (n-i)^3); \\ Michel Marcus, Nov 19 2017
    
  • PARI
    concat(vector(2), Vec(x^3*(9 + 19*x + 36*x^2 + 22*x^3 + 9*x^4 + x^5) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Nov 21 2017

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} i^3 + (n-i)^3.
From David A. Corneth, Oct 27 2017: (Start)
For odd n, a(n) = binomial(n, 2)^2 = n^4/4 - n^3/2 + x^2/4.
For even n, a(n) = binomial(n, 2)^2 - n^3/8 = n^4/4 - 5*n^3/8 + x^2/4. (End)
G.f.: -x^3*(9 + 19*x + 36*x^2 + 22*x^3 + 9*x^4 + x^5) /(1+x)^4 /(x-1)^5. - R. J. Mathar, Nov 07 2017
From Colin Barker, Nov 21 2017: (Start)
a(n) = (1/16)*(n^2*(4 - (9 + (-1)^n)*n + 4*n^2)).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>9.
(End)