A294287 Sum of the cubes of the parts in the partitions of n into two distinct parts.
0, 0, 9, 28, 100, 198, 441, 720, 1296, 1900, 3025, 4140, 6084, 7938, 11025, 13888, 18496, 22680, 29241, 35100, 44100, 52030, 64009, 74448, 90000, 103428, 123201, 140140, 164836, 185850, 216225, 241920, 278784, 309808, 354025, 391068, 443556, 487350, 549081
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Crossrefs
Cf. A294270.
Programs
-
Mathematica
Table[Sum[i^3 + (n - i)^3, {i, Floor[(n-1)/2]}], {n, 40}]
-
PARI
first(n) = my(res = vector(n, i, binomial(i,2)^2)); forstep(i=2, n, 2, res[i] -= i^3/8); res \\ David A. Corneth, Oct 27 2017
-
PARI
a(n) = sum(i=1, (n-1)\2, i^3 + (n-i)^3); \\ Michel Marcus, Nov 19 2017
-
PARI
concat(vector(2), Vec(x^3*(9 + 19*x + 36*x^2 + 22*x^3 + 9*x^4 + x^5) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Nov 21 2017
Formula
a(n) = Sum_{i=1..floor((n-1)/2)} i^3 + (n-i)^3.
From David A. Corneth, Oct 27 2017: (Start)
For odd n, a(n) = binomial(n, 2)^2 = n^4/4 - n^3/2 + x^2/4.
For even n, a(n) = binomial(n, 2)^2 - n^3/8 = n^4/4 - 5*n^3/8 + x^2/4. (End)
G.f.: -x^3*(9 + 19*x + 36*x^2 + 22*x^3 + 9*x^4 + x^5) /(1+x)^4 /(x-1)^5. - R. J. Mathar, Nov 07 2017
From Colin Barker, Nov 21 2017: (Start)
a(n) = (1/16)*(n^2*(4 - (9 + (-1)^n)*n + 4*n^2)).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>9.
(End)