cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294298 Sum of products of terms in all partitions of 3*n into powers of 3.

Original entry on oeis.org

1, 4, 13, 49, 157, 481, 1534, 4693, 14170, 43357, 130918, 393601, 1188454, 3573013, 10726690, 32248957, 96815758, 290516161, 872169223, 2617128409, 7852005967, 23561605318, 70690403371, 212076797530, 636280680100, 1908892327810, 5726727270940, 17180634420931
Offset: 0

Views

Author

Seiichi Manyama, Oct 27 2017

Keywords

Examples

			n | partitions of 3*n into powers of 3                          | a(n)
----------------------------------------------------------------------------------
1 | 3  , 1+1+1                                                  | 3+1        =  4.
2 | 3+3, 3+1+1+1, 1+1+1+1+1+1                                   | 9+3+1      = 13.
3 | 9  , 3+3+3  , 3+3+1+1+1  , 3+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1 | 9+27+9+3+1 = 49.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p,
         `if`(i<1, 0, add(b(n-j*i, i/3, p*i^j), j=0..n/i)))
        end:
    a:= n-> (t-> b(t, 3^ilog[3](t), 1))(3*n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Oct 27 2017
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, p, If[i < 1, 0, Sum[b[n - j i, i/3, p i^j], {j, 0, n/i}]]];
    a[n_] := b[3n, 3^Floor@Log[3, 3n], 1];
    a /@ Range[0, 33] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)

Formula

a(n) = [x^(3*n)] Product_{k>=0} 1/(1 - 3^k*x^(3^k)). - Ilya Gutkovskiy, Sep 10 2018
a(n) ~ c * 3^n, where c = 2.2530906593645919365992433370928351696108819534655299832797806149219665... - Vaclav Kotesovec, Jun 18 2019