A294298 Sum of products of terms in all partitions of 3*n into powers of 3.
1, 4, 13, 49, 157, 481, 1534, 4693, 14170, 43357, 130918, 393601, 1188454, 3573013, 10726690, 32248957, 96815758, 290516161, 872169223, 2617128409, 7852005967, 23561605318, 70690403371, 212076797530, 636280680100, 1908892327810, 5726727270940, 17180634420931
Offset: 0
Keywords
Examples
n | partitions of 3*n into powers of 3 | a(n) ---------------------------------------------------------------------------------- 1 | 3 , 1+1+1 | 3+1 = 4. 2 | 3+3, 3+1+1+1, 1+1+1+1+1+1 | 9+3+1 = 13. 3 | 9 , 3+3+3 , 3+3+1+1+1 , 3+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1 | 9+27+9+3+1 = 49.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, p, `if`(i<1, 0, add(b(n-j*i, i/3, p*i^j), j=0..n/i))) end: a:= n-> (t-> b(t, 3^ilog[3](t), 1))(3*n): seq(a(n), n=0..33); # Alois P. Heinz, Oct 27 2017
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p, If[i < 1, 0, Sum[b[n - j i, i/3, p i^j], {j, 0, n/i}]]]; a[n_] := b[3n, 3^Floor@Log[3, 3n], 1]; a /@ Range[0, 33] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
Formula
a(n) = [x^(3*n)] Product_{k>=0} 1/(1 - 3^k*x^(3^k)). - Ilya Gutkovskiy, Sep 10 2018
a(n) ~ c * 3^n, where c = 2.2530906593645919365992433370928351696108819534655299832797806149219665... - Vaclav Kotesovec, Jun 18 2019