cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294300 Sum of the fifth powers of the parts in the partitions of n into two distinct parts.

Original entry on oeis.org

0, 0, 33, 244, 1300, 4182, 12201, 27984, 61776, 117700, 220825, 374100, 630708, 985194, 1539825, 2266432, 3347776, 4708584, 6657201, 9033300, 12333300, 16256350, 21571033, 27758544, 35970000, 45364332, 57617001, 71428084, 89176276, 108928050, 133987425
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 27 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[i^5 + (n - i)^5, {i, Floor[n/2] - Mod[n + 1, 2]}], {n, 40}]
    Table[Total[Flatten[Select[IntegerPartitions[n,{2}],#[[1]]!=#[[2]]&]]^5],{n,40}] (* Harvey P. Dale, Sep 04 2024 *)
  • PARI
    concat(vector(2), Vec(x^3*(33 + 211*x + 858*x^2 + 1616*x^3 + 2178*x^4 + 1656*x^5 + 858*x^6 + 236*x^7 + 33*x^8 + x^9) / ((1 - x)^7*(1 + x)^6) + O(x^40))) \\ Colin Barker, Nov 21 2017
    
  • PARI
    a(n) = sum(i=1, (n-1)\2, i^5 + (n-i)^5); \\ Michel Marcus, Nov 22 2017

Formula

a(n) = Sum_{i=1..floor(n/2)-((n+1) mod 2)} i^5 + (n-i)^5.
G.f.: -x^3*(33 +211*x +858*x^2 +1616*x^3 +2178*x^4 +1656*x^5 +858*x^6 +236*x^7 +33*x^8 +x^9) /(1+x)^6 /(x-1)^7. - R. J. Mathar, Nov 07 2017
From Colin Barker, Nov 21 2017: (Start)
a(n) = (1/192)*(n^2*(-16 + 80*n^2 - 3*(33 + (-1)^n)*n^3 + 32*n^4)).
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - 15*a(n-4) + 15*a(n-5) + 20*a(n-6) - 20*a(n-7) - 15*a(n-8) + 15*a(n-9) + 6*a(n-10) - 6*a(n-11) - a(n-12) + a(n-13) for n>13.
(End)