cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A294336 Number of ways to write n as a finite power-tower a^(b^(c^...)) of positive integers greater than one.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2017

Keywords

Comments

Möbius-transform of A294337. - Antti Karttunen, Jun 12 2018

Examples

			The a(4096) = 7 ways are: 2^12, 4^6, 8^4, 8^(2^2), 16^3, 64^2, 4096.
		

Crossrefs

Programs

  • Mathematica
    Array[1+Sum[#0[g],{g,Rest[Divisors[GCD@@FactorInteger[#1][[All,2]]]]}]&,200]
  • PARI
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A294336(n) = if(1==n,n,sumdiv(A052409(n),d,A294336(d))); \\ Antti Karttunen, Jun 12 2018, after Mathematica-code.

Formula

a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} a(d). - Antti Karttunen, Jun 12 2018, after Mathematica-code.
a(n) = A294337(A052409(n)) for n >= 2. - Pontus von Brömssen, Aug 20 2024

Extensions

More terms from Antti Karttunen, Jun 12 2018

A294337 Number of ways to write 2^n as a finite power-tower a^(b^(c^...)) of positive integers greater than one.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 7, 2, 4, 4, 10, 2, 7, 2, 7, 4, 4, 2, 10, 4, 4, 6, 7, 2, 8, 2, 12, 4, 4, 4, 12, 2, 4, 4, 10, 2, 8, 2, 7, 7, 4, 2, 15, 4, 7, 4, 7, 2, 10, 4, 10, 4, 4, 2, 13, 2, 4, 7, 16, 4, 8, 2, 7, 4, 8, 2, 16, 2, 4, 7, 7, 4, 8, 2, 15, 10, 4, 2, 13, 4, 4, 4, 10, 2, 13, 4, 7, 4, 4, 4, 18, 2, 7, 7, 12, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2017

Keywords

Examples

			The a(12) = 7 ways are: 2^12, 4^6, 8^4, 8^(2^2), 16^3, 64^2, 4096.
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A294336(d) = A294336(A000079(n)). - Antti Karttunen, Jun 12 2018

Extensions

More terms from Antti Karttunen, Jun 12 2018

A294338 Number of ways to write n as a finite power-tower of positive integers greater than one, allowing both left and right nesting of parentheses.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2017

Keywords

Examples

			The a(16) = 5 ways are: 16, 4^2, (2^2)^2, 2^4, 2^(2^2).
		

Crossrefs

Programs

  • Maple
    A294338 := proc(n)
        local expo,g,a,d ;
        if n =1 then
            return 1;
        end if;
        # compute gcd of the set of prime power exponents (A052409)
        ifactors(n)[2] ;
        [ seq(op(2,ep),ep=%)] ;
        igcd(op(%)) ;
        # set of divisors of A052409 (without the 1)
        g := numtheory[divisors](%) minus {1} ;
        a := 0 ;
        for d in g do
            # recursive (sort of convolution) call
            a := a+ procname(d)*procname(root[d](n)) ;
        end do:
        1+a ;
    end proc:
    seq(A294338(n),n=1..120) ; # R. J. Mathar, Nov 27 2017
  • Mathematica
    a[n_]:=1+Sum[a[n^(1/g)]*a[g],{g,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}];
    Array[a,100]
Showing 1-3 of 3 results.