A294345 Sum of the products of the smaller and larger parts of the Goldbach partitions of n into two distinct parts.
0, 0, 0, 0, 6, 0, 10, 15, 14, 21, 0, 35, 22, 33, 26, 94, 0, 142, 34, 142, 38, 142, 0, 357, 46, 202, 0, 302, 0, 591, 58, 334, 62, 491, 0, 980, 0, 217, 74, 821, 0, 1340, 82, 785, 86, 827, 0, 1987, 94, 1512, 0, 1353, 0, 2677, 106, 1421, 0, 1479, 0, 4242, 118
Offset: 1
Examples
a(22) = 142; the Goldbach partitions of 22 are (19,3), (17,5) and (11,11) (we do not consider (11,11) since we only count prime parts which are distinct). Then the sum of the products of the smaller and larger parts from each partition is 19*3 + 17*5 = 142.
Links
- Eric Weisstein's World of Mathematics, Goldbach Partition
- Wikipedia, Goldbach's conjecture
- Index entries for sequences related to Goldbach conjecture
- Index entries for sequences related to partitions
Programs
-
Maple
with(numtheory): A294345:=n->add(i*(n-i)*(pi(i)-pi(i-1))*(pi(n-i)-pi(n-i-1)), i=2..floor((n-1)/2)): seq(A294345(n), n=1..100);
-
Mathematica
Table[Sum[i (n - i) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i] - PrimePi[n - i - 1]), {i, 2, Floor[(n-1)/2]}], {n, 60}] Table[Total[Times@@@Select[IntegerPartitions[n,{2}],AllTrue[#,PrimeQ] && #[[1]]!=#[[2]]&]],{n,70}] (* Harvey P. Dale, Jul 29 2021 *)
-
PARI
a(n) = sum(i=1, (n-1)\2, i*isprime(i)*(n-i)*isprime(n-i)); \\ Michel Marcus, Nov 08 2017
Formula
a(n) = Sum_{i=2..floor((n-1)/2)} i * (n-i) * c(i) * c(n-i), where c is the prime characteristic (A010051).
a(k) = 0, for k in A166081. - Michel Marcus, Oct 30 2017
Comments