A294498 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(2*k*x)*(BesselI(0,2*x) - BesselI(1,2*x))^k.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 5, 0, 1, 4, 12, 22, 14, 0, 1, 5, 20, 57, 92, 42, 0, 1, 6, 30, 116, 306, 424, 132, 0, 1, 7, 42, 205, 752, 1806, 2108, 429, 0, 1, 8, 56, 330, 1550, 5328, 11508, 11134, 1430, 0, 1, 9, 72, 497, 2844, 12730, 40632, 78147, 61748, 4862, 0
Offset: 0
Examples
E.g.f. of column k: A_k(x) = 1 + k*x/1! + k*(k + 1)*x^2/2! + k*(k^2 + 3*k + 1)*x^3/3! + k^2*(k^2 + 6*k + 7)*x^4/4! + k*(k^4 + 10*k^3 + 25*k^2 + 10*k - 4)*x^5/5! + ... Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 2, 6, 12, 20, 30, ... 0, 5, 22, 57, 116, 205, ... 0, 14, 92, 306, 752, 1550, ... 0, 42, 424, 1806, 5328, 12730, ...
Links
- Alois P. Heinz, Antidiagonals for n = 0..150, flattened
Crossrefs
Programs
-
Maple
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end: A:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, C(n), (h-> add(binomial(n, j)*A(j, h)*A(n-j, k-h), j=0..n))(iquo(k, 2)))) end: seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Jan 06 2023
-
Mathematica
Table[Function[k, n! SeriesCoefficient[Exp[2 k x] (BesselI[0, 2 x] - BesselI[1, 2 x])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
Formula
E.g.f. of column k: exp(2*k*x)*(BesselI(0,2*x) - BesselI(1,2*x))^k.
Comments