cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294498 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(2*k*x)*(BesselI(0,2*x) - BesselI(1,2*x))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 5, 0, 1, 4, 12, 22, 14, 0, 1, 5, 20, 57, 92, 42, 0, 1, 6, 30, 116, 306, 424, 132, 0, 1, 7, 42, 205, 752, 1806, 2108, 429, 0, 1, 8, 56, 330, 1550, 5328, 11508, 11134, 1430, 0, 1, 9, 72, 497, 2844, 12730, 40632, 78147, 61748, 4862, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 01 2017

Keywords

Comments

A(n,k) is the k-fold exponential convolution of Catalan numbers with themselves, evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = 1 + k*x/1! +  k*(k + 1)*x^2/2! + k*(k^2 + 3*k + 1)*x^3/3! + k^2*(k^2 + 6*k + 7)*x^4/4! + k*(k^4 + 10*k^3 + 25*k^2 + 10*k - 4)*x^5/5! + ...
Square array begins:
  1,   1,    1,     1,     1,      1,  ...
  0,   1,    2,     3,     4,      5,  ...
  0,   2,    6,    12,    20,     30,  ...
  0,   5,   22,    57,   116,    205,  ...
  0,  14,   92,   306,   752,   1550,  ...
  0,  42,  424,  1806,  5328,  12730,  ...
		

Crossrefs

Columns k=0..3 give A000007, A000108, A014330, A014333.
Rows n=0..2 give A000012, A001477, A002378.
Main diagonal gives A294511.

Programs

  • Maple
    C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    A:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, C(n),
          (h-> add(binomial(n, j)*A(j, h)*A(n-j, k-h), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jan 06 2023
  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[2 k x] (BesselI[0, 2 x] - BesselI[1, 2 x])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(2*k*x)*(BesselI(0,2*x) - BesselI(1,2*x))^k.