cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294520 Numerators of the partial sums of the reciprocals of the dodecagonal numbers (k + 1)*(5*k + 1) = A051624(k+1), for k >= 0.

Original entry on oeis.org

1, 13, 49, 795, 84179, 366829, 11417459, 103067441, 4235695001, 97604192047, 1661825059679, 1663957022369, 101611584435869, 101706166053389, 7226964017429851, 17176158550059533, 154681745346189277, 6654999228519884521, 6658297729691103841, 21316057915886595965, 2153790894613123442641
Offset: 0

Views

Author

Wolfdieter Lang, Nov 15 2017

Keywords

Comments

The corresponding denominators are given in A294521.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,1].
The limit of the series is V(5,1) = lim_{n -> oo} V(5,1;n) = ((5/2)*log(5) + (2*phi - 1)*(log(phi) + (Pi/5)*sqrt(3 + 4*phi)))/8, with the golden section phi:= (1 + sqrt(5))/2. The value is 1.17795605792266... given in A244649.

Examples

			The rationals V(5,1;n), n >= 0, begin: 1, 13/12, 49/44, 795/704, 84179/73920, 366829/320320, 11417459/9929920, 103067441/89369280, 4235695001/3664140480, 97604192047/84275231040, 1661825059679/1432678927680, ...
V(5,1;10^6) = 1.177956058 (Maple, 10 digits) to be compared with 1.177956058 obtained from V(5,1) given in A244649.
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.

Crossrefs

Programs

  • Magma
    [Numerator((&+[1/((k+1)*(5*k+1)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018
  • Mathematica
    Table[Numerator[Sum[1/((k + 1)*(5*k + 1)), {k, 0, n}]], {n, 0, 30}] (* G. C. Greubel, Aug 29 2018 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 1)))); \\ Michel Marcus, Nov 15 2017
    

Formula

a(n) = numerator(V(5,1;n)) with V(5,1;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 1)) = Sum_{k=0..n} 1/A051624(k+1) = (1/4)*Sum_{k=0..n} (1/(k + 1/5) - 1/(k+1)) = (-Psi(1/5) + Psi(n+6/5) - (gamma + Psi(n+2)))/4, with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.