A294602 a(n) = pi(n-1) - pi(floor(n/2)), where pi is A000720.
0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 9, 9, 10, 10, 9
Offset: 1
Examples
a(8) = 2 because there are 2 primes between 4 and 8: 5, 7. a(19) = 3 because there are 3 primes between 9 and 19: 11, 13, 17.
Programs
-
Magma
[0, 0] cat [#PrimesInInterval(Floor(n/2)+1, n-1): n in [3..86]];
-
Maple
A294602 := proc(n) numtheory[pi](n-1)-numtheory[pi](floor(n/2)) ; end proc: seq(A294602(n),n=1..120) ; # R. J. Mathar, Dec 17 2017
-
Mathematica
Array[PrimePi[# - 1] - PrimePi[Floor[#/2]] &, 86] (* Michael De Vlieger, Nov 03 2017 *)
-
PARI
vector(86, n, primepi(n-1)-primepi(n\2))
Formula
a(n) = Sum_{i=1..floor((n-1)/2)} A010051(n-i). - Wesley Ivan Hurt, Apr 07 2018
Comments