cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294603 Number of words of semilength n over n-ary alphabet, either empty or beginning with the first letter of the alphabet, such that the index set of occurring letters is an integer interval [1, k], that can be built by repeatedly inserting doublets into the initially empty word.

Original entry on oeis.org

1, 1, 3, 20, 231, 3864, 85360, 2353546, 77963599, 3019479344, 133966276692, 6702399275538, 373406941221160, 22930441709648290, 1539004344848618466, 112089683771614695478, 8805334896381292460191, 742162775145283382779168, 66809386370870410069346476
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2017

Keywords

Examples

			a(0) = 1: the empty word.
a(1) = 1: aa.
a(2) = 3: aaaa, aabb, abba.
a(3) = 20: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, aabbcc, aabccb, aacbbc, aaccbb, abaaba, abbaaa, abbabb, abbacc, abbbba, abbcca, abccba, acbbca, accabb, accbba.
		

Crossrefs

Row sums of A256116.
Cf. A258498.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
          add(binomial(2*n, j) *(n-j) *(k-1)^j, j=0..n-1))
        end:
    T:= proc(n, k) option remember;
          add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)/`if`(k=0, 1, k)
        end:
    a:= n-> add(T(n, k), k=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*
         Sum[Binomial[2*n, j]*(n-j) *If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
    T[n_, k_] := T[n, k] =
         Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]/If[k == 0, 1, k];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} A256116(n,k).