A294686 Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly four colors under translational symmetry, 1 <= k <= n.
0, 0, 6, 0, 260, 20720, 6, 5112, 1223136, 257706024, 48, 81876, 67769552, 54278580036, 44900438149488, 260, 1223396, 3731753700, 11681058472672, 38403264917970196, 131160169581733489616, 1200, 17815020, 207438938000, 2570217454576416, 33725471278376393424, 460532748521625850986660, 6467585568566200114362823920, 5106, 257706012, 11681057249536, 576229125971686224
Offset: 1
Examples
Triangle begins: 0; 0, 6; 0, 260, 20720; 6, 5112, 1223136, 257706024; 48, 81876, 67769552, 54278580036, 44900438149488; 260, 1223396, 3731753700, 11681058472672, 38403264917970196, 131160169581733489616; ...
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..820 (first 40 rows)
- Marko Riedel et al., Burnside lemma and translational symmetries of the torus.
Crossrefs
Programs
-
PARI
T(n,m)=my(k=4); k!*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), k, 2) ))/(n*m) \\ Andrew Howroyd, Oct 05 2024
Formula
T(n,k) = (Q!/(n*k))*(Sum_{d|n} Sum_{f|k} phi(d) phi(f) S(gcd(d,f)*(n/d)*(k/f), Q)) with Q=4 and S(n,k) Stirling numbers of the second kind.
Comments