A345175 Numbers that are the sum of five third powers in exactly six ways.
2430, 2979, 3214, 3249, 3312, 3492, 3520, 3737, 3753, 3788, 3816, 3842, 3942, 3968, 4121, 4185, 4213, 4267, 4355, 4411, 4418, 4446, 4453, 4456, 4465, 4482, 4509, 4563, 4626, 4663, 4670, 4723, 4753, 4896, 4905, 4924, 4938, 4941, 4950, 4960, 4976, 4987, 4994
Offset: 1
Keywords
Examples
2430 is a term because 2430 = 1^3 + 2^3 + 2^3 + 5^3 + 12^3 = 1^3 + 3^3 + 4^3 + 7^3 + 11^3 = 2^3 + 2^3 + 6^3 + 6^3 + 11^3 = 2^3 + 3^3 + 3^3 + 9^3 + 10^3 = 3^3 + 5^3 + 8^3 + 8^3 + 8^3 = 3^3 + 4^3 + 7^3 + 8^3 + 9^3.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 5): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 6]) for x in range(len(rets)): print(rets[x])
Comments