cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A007178 Number of ways to write 1 as ordered sum of n powers of 1/2, allowing repeats.

Original entry on oeis.org

1, 1, 3, 13, 75, 525, 4347, 41245, 441675, 5259885, 68958747, 986533053, 15292855019, 255321427725, 4567457001915, 87156877087069, 1767115200924299, 37936303950503853, 859663073472084315, 20505904049009202685, 513593410566661282347, 13476082013068430626893
Offset: 1

Views

Author

Keywords

Comments

Also the dimension of the arity n component of the operad of level algebras (see the reference by Chataur-Livernet by definition), and the cardinality of the subset of the free commutative medial magma with n generators that contains each generator exactly once. The linear operad of level algebras is the linearization of the set operad of commutative medial magmas; the statement about commutative medial magmas follows from the description in the paper of Ježek-Kepka. - Vladimir Dotsenko, Mar 12 2022

Examples

			For n=3, the 3 sums are 1/2 + 1/4 + 1/4, 1/4 + 1/2 + 1/4, and 1/4 + 1/4 + 1/2.
		

References

  • D. E. Knuth, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, r, p) option remember; `if`(n b(n, 1, 0):
    seq(a(n), n=1..23);  # Alois P. Heinz, Nov 07 2017
  • Mathematica
    f[n_] := Coefficient[Expand[Sum[z^(2^j), {j, n}]^n], z, 2^n]; Array[f, 20] (* Robert G. Wilson v, Apr 08 2012 *)
  • PARI
    f(n)={my(M);if(n>1,M=matrix(n,n);M[2,1] = 1;for(k=3,n,for(l=1,k-2,M[k,l] = 0;smx = min(2*l,k-l-1);for(s=1,smx, M[k,l] += binomial(k+l-1,2*l-s)*M[k-l,s]));M[k,k-1] = 1);M[n,1],1)}

Formula

a(n) = coefficient of z^(2^n) in (z+z^2+z^4+...+z^(2^n))^n. - Don Knuth.
From Giuseppe Molteni, Dec 14 2012: (Start)
Limit_{n->oo} (a(n)/n!)^(1/n) = 1.192674341213466032221288982528755... (see References: "Representation of a 2-power as sum of k 2-powers: the asymptotic behavior").
a(n) == 4 + (-1)^n (mod 8) for n > 2 (see References: "Representation of a 2-power as sum of k 2-powers: a recursive formula"). (End)
More precise asymptotics: a(n) ~ c * d^n * n!, where d = 1.192674341213466032221288982528755176734489232027131552652821007498903522051783..., c = 0.24849369086953813603231092781945750388624874631949260927875431616785914609... - Vaclav Kotesovec, Sep 20 2019
a(n) = A323840(n,n). - Alois P. Heinz, Mar 31 2021

Extensions

More terms from Hugo van der Sanden
Minor edits from Vaclav Kotesovec, Jul 26 2014

A294775 Number A(n,k) of partitions of 1 into exactly k*n+1 powers of 1/(k+1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 4, 5, 1, 1, 1, 1, 2, 4, 7, 9, 1, 1, 1, 1, 2, 4, 8, 13, 16, 1, 1, 1, 1, 2, 4, 8, 15, 25, 28, 1, 1, 1, 1, 2, 4, 8, 16, 29, 48, 50, 1, 1, 1, 1, 2, 4, 8, 16, 31, 57, 92, 89, 1, 1, 1, 1, 2, 4, 8, 16, 32, 61, 112, 176, 159, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 08 2017

Keywords

Examples

			A(4,1) = 3: [1/4,1/4,1/4,1/8,1/8], [1/2,1/8,1/8,1/8,1/8], [1/2,1/4,1/8,1/16,1/16].
A(5,2) = 7: [1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/3,1/9,1/27,1/27,1/27,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/81,1/81,1/81,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/27,1/81,1/81,1/243,1/243,1/243].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  2,  2,  2,  2,  2,  2,  2,  2, ...
  1,  3,  4,  4,  4,  4,  4,  4,  4, ...
  1,  5,  7,  8,  8,  8,  8,  8,  8, ...
  1,  9, 13, 15, 16, 16, 16, 16, 16, ...
  1, 16, 25, 29, 31, 32, 32, 32, 32, ...
  1, 28, 48, 57, 61, 63, 64, 64, 64, ...
		

Crossrefs

Columns k=0-10 give (offsets may differ): A000012, A002572, A176485, A176503, A194628, A194629, A194630, A194631, A194632, A194633, A295081.
Main diagonal gives A011782(n-1) for n>0.
Cf. A294746.

Programs

  • Maple
    b:= proc(n, r, k) option remember;
          `if`(n `if`(k=0, 1, b(k*n+1, 1, k+1)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k*(r - j), k], {j, 0, Min[n, r]}]]];
    A[n_, k_] := If[k == 0, 1, b[k*n + 1, 1, k + 1]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Nov 11 2017, after Alois P. Heinz *)

A294747 Number of compositions (ordered partitions) of 1 into exactly n^2+1 powers of 1/(n+1).

Original entry on oeis.org

1, 1, 10, 4245, 216456376, 2713420774885145, 14138484434475011392912026, 46050764886573707269872023694736134925, 131223281654667714701311635640432890136981994039662720, 435699237793484726791774188056400878106883117166142375354233228879800569
Offset: 0

Views

Author

Alois P. Heinz, Nov 07 2017

Keywords

Examples

			a(0) = 1: [1].
a(1) = 1: [1/2,1/2].
a(2) = 10 = binomial(5,2): [1/3,1/3,1/9,1/9,1/9], [1/3,1/9,1/3,1/9,1/9], [1/3,1/9,1/9,1/3,1/9], [1/3,1/9,1/9,1/9,1/3], [1/9,1/3,1/3,1/9,1/9], [1/9,1/3,1/9,1/3,1/9], [1/9,1/3,1/9,1/9,1/3], [1/9,1/9,1/3,1/3,1/9], [1/9,1/9,1/3,1/9,1/3], [1/9,1/9,1/9,1/3,1/3].
		

Crossrefs

Main diagonal of A294746.
Cf. A002522.

Programs

  • Maple
    b:= proc(n, r, p, k) option remember;
          `if`(n `if`(n=0, 1, b(n^2+1, 1, 0, n+1)):
    seq(a(n), n=0..10);
  • Mathematica
    b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]];
    a[n_] := If[n == 0, 1, b[n^2 + 1, 1, 0, n + 1]];
    Table[a[n], {n, 0, 10}] (* Jean-François Alcover, May 21 2018, translated from Maple *)

Formula

a(n) = [x^((n+1)^n)] (Sum_{j=0..n^2+1} x^((n+1)^j))^(n^2+1) for n>0, a(0) = 1.
a(n) = A294746(n,n).
a(n) ~ exp(-1/12) * n^(n^2 - n/2 + 2) / (2*Pi)^((n-1)/2). - Vaclav Kotesovec, Sep 20 2019

A294850 Number of compositions (ordered partitions) of 1 into exactly 2*n+1 powers of 1/3.

Original entry on oeis.org

1, 1, 10, 217, 8317, 487630, 40647178, 4561368175, 663134389930, 121218250616173, 27212315953140892, 7359774260167595035, 2360287411461166320775, 885627663284464131142801, 384376149675044501884907410, 191068288010770323577312291141
Offset: 0

Views

Author

Alois P. Heinz, Nov 09 2017

Keywords

Examples

			a(0) = 1: [1].
a(1) = 1: [1/3,1/3,1/3].
a(2) = 10: [1/3,1/3,1/9,1/9,1/9], [1/3,1/9,1/3,1/9,1/9], [1/3,1/9,1/9,1/3,1/9], [1/3,1/9,1/9,1/9,1/3], [1/9,1/3,1/3,1/9,1/9], [1/9,1/3,1/9,1/3,1/9], [1/9,1/3,1/9,1/9,1/3], [1/9,1/9,1/3,1/3,1/9], [1/9,1/9,1/3,1/9,1/3], [1/9,1/9,1/9,1/3,1/3].
		

Crossrefs

Column k=2 of A294746.

Formula

a(n) = [x^(3^n)] (Sum_{j=0..2*n+1} x^(3^j))^(2*n+1).
a(n) ~ c * d^n * n^(2*n + 3/2), where d = 0.28934785344292228780991..., c = 1.984098413887380996408... - Vaclav Kotesovec, Sep 20 2019

A294851 Number of compositions (ordered partitions) of 1 into exactly 3*n+1 powers of 1/4.

Original entry on oeis.org

1, 1, 35, 4245, 1239823, 709097481, 701954099115, 1104353764428365, 2594884910993019575, 8684483842898500680225, 39880061006390454401626995, 243797643642188511890409843525, 1935230187172759446730224649089055, 19533122859042054951154895127392582265
Offset: 0

Views

Author

Alois P. Heinz, Nov 09 2017

Keywords

Crossrefs

Column k=3 of A294746.

Formula

a(n) = [x^(4^n)] (Sum_{j=0..3*n+1} x^(4^j))^(3*n+1).
a(n) ~ c * d^n * n^(3*n + 3/2), where d = 0.228881755274644937676549309..., c = 3.08458888791535695636629... - Vaclav Kotesovec, Sep 20 2019

A294852 Number of compositions (ordered partitions) of 1 into exactly 4*n+1 powers of 1/5.

Original entry on oeis.org

1, 1, 126, 90376, 216456376, 1303699790001, 16596702491586251, 396695587555058190126, 16336038155342083651640376, 1085776473843765315524916060126, 110656003660578876500875377620844376, 16592064238583710535773294961607940956876
Offset: 0

Views

Author

Alois P. Heinz, Nov 09 2017

Keywords

Crossrefs

Column k=4 of A294746.

Formula

a(n) = [x^(5^n)] (Sum_{j=0..4*n+1} x^(5^j))^(4*n+1).

A294853 Number of compositions (ordered partitions) of 1 into exactly 5*n+1 powers of 1/6.

Original entry on oeis.org

1, 1, 462, 2019836, 41175714454, 2713420774885145, 461871979542736134676, 174436242482643190451211853, 130958058407369286623026190867082, 179835209135492330050411858875313971595, 423205992807070499591372608204571223421862945
Offset: 0

Views

Author

Alois P. Heinz, Nov 09 2017

Keywords

Crossrefs

Column k=5 of A294746.

Formula

a(n) = [x^(6^n)] (Sum_{j=0..5*n+1} x^(6^j))^(5*n+1).

A294854 Number of compositions (ordered partitions) of 1 into exactly 6*n+1 powers of 1/7.

Original entry on oeis.org

1, 1, 1716, 46570140, 8251690444250, 6078597035484932995, 14138484434475011392912026, 86237678200608256132213084584295, 1206534243283932582765850205674424343577, 34994508245963099403565066291175900528344592700
Offset: 0

Views

Author

Alois P. Heinz, Nov 09 2017

Keywords

Crossrefs

Column k=6 of A294746.

Formula

a(n) = [x^(7^n)] (Sum_{j=0..6*n+1} x^(7^j))^(6*n+1).

A294855 Number of compositions (ordered partitions) of 1 into exactly 7*n+1 powers of 1/8.

Original entry on oeis.org

1, 1, 6435, 1097525253, 1713228373452375, 14303426764164190428105, 460977928965130046448503507051, 46050764886573707269872023694736134925, 12176825528022093702548525617184407475359333407, 7565469782615095731665958935875509379368611893407583633
Offset: 0

Views

Author

Alois P. Heinz, Nov 09 2017

Keywords

Crossrefs

Column k=7 of A294746.

Formula

a(n) = [x^(8^n)] (Sum_{j=0..7*n+1} x^(8^j))^(7*n+1).

A294856 Number of compositions (ordered partitions) of 1 into exactly 8*n+1 powers of 1/9.

Original entry on oeis.org

1, 1, 24310, 26293568950, 365077361327242168, 34883776613634643730481238, 15732393344641740454307566725567376, 25997337847684377365651388718120083246723460, 131223281654667714701311635640432890136981994039662720
Offset: 0

Views

Author

Alois P. Heinz, Nov 09 2017

Keywords

Crossrefs

Column k=8 of A294746.

Formula

a(n) = [x^(9^n)] (Sum_{j=0..8*n+1} x^(9^j))^(8*n+1).
Showing 1-10 of 20 results. Next