A173990 Incorrect version of A007178.
1, 1, 3, 13, 75, 530, 4449, 43236
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
{1}; {1/2 + 1/2}; { 1/2 + 1/4 + 1/4 }; { 1/2 + 1/4 + 1/8 + 1/8, 1/4 + 1/4 + 1/4 + 1/4 }; ... From _Joerg Arndt_, Dec 18 2012: (Start) There are a(7+1)=16 compositions 7=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 2*p(k+1): [ 1] [ 1 1 1 1 1 1 1 ] [ 2] [ 1 1 1 1 1 2 ] [ 3] [ 1 1 1 1 2 1 ] [ 4] [ 1 1 1 2 1 1 ] [ 5] [ 1 1 1 2 2 ] [ 6] [ 1 1 2 1 1 1 ] [ 7] [ 1 1 2 1 2 ] [ 8] [ 1 1 2 2 1 ] [ 9] [ 1 1 2 3 ] [10] [ 1 2 1 1 1 1 ] [11] [ 1 2 1 1 2 ] [12] [ 1 2 1 2 1 ] [13] [ 1 2 2 1 1 ] [14] [ 1 2 2 2 ] [15] [ 1 2 3 1 ] [16] [ 1 2 4 ] (End) From _Joerg Arndt_, Dec 26 2012: (Start) There are a(8)=16 partitions of 1 into 8 powers of 1/2 (dots denote zeros in the tables of multiplicities in the left column) [ 1] [ . 1 1 1 1 1 1 2 ] + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 2/128 [ 2] [ . 1 1 1 1 . 4 . ] + 1/2 + 1/4 + 1/8 + 1/16 + 4/64 [ 3] [ . 1 1 1 . 3 2 . ] + 1/2 + 1/4 + 1/8 + 3/32 + 2/64 [ 4] [ . 1 1 . 3 1 2 . ] + 1/2 + 1/4 + 3/16 + 1/32 + 2/64 [ 5] [ . 1 1 . 2 4 . . ] + 1/2 + 1/4 + 2/16 + 4/32 [ 6] [ . 1 . 3 1 1 2 . ] + 1/2 + 3/8 + 1/16 + 1/32 + 2/64 [ 7] [ . 1 . 3 . 4 . . ] + 1/2 + 3/8 + 4/32 [ 8] [ . 1 . 2 3 2 . . ] + 1/2 + 2/8 + 3/16 + 2/32 [ 9] [ . 1 . 1 6 . . . ] + 1/2 + 1/8 + 6/16 [10] [ . . 3 1 1 1 2 . ] + 3/4 + 1/8 + 1/16 + 1/32 + 2/64 [11] [ . . 3 1 . 4 . . ] + 3/4 + 1/8 + 4/32 [12] [ . . 3 . 3 2 . . ] + 3/4 + 3/16 + 2/32 [13] [ . . 2 3 1 2 . . ] + 2/4 + 3/8 + 1/16 + 2/32 [14] [ . . 2 2 4 . . . ] + 2/4 + 2/8 + 4/16 [15] [ . . 1 5 2 . . . ] + 1/4 + 5/8 + 2/16 [16] [ . . . 8 . . . . ] + 8/8 (End)
v := proc(c,d) option remember; local i; if d < 0 or c < 0 then 0 elif d = c then 1 else add(v(i,d-c),i=1..2*c); fi; end; [ seq(v(1,n), n=1..50) ];
v[c_, d_] := v[c, d] = If[d < 0 || c < 0, 0, If[d == c, 1, Sum[v[i, d - c], {i, 1, 2*c}]]]; a[n_] := v[1, n-1]; a[1] = 1; Table[a[n], {n, 1, 36}] (* Jean-François Alcover, Oct 19 2011, after Maple *)
v(c,d) = if ( d<0 || c<0, 0, if ( d==c, 1, sum(i=1,2*c, v(i,d-c) ) ) )
/* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */ N=66; q='q+O('q^N); t=2; /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503 */ L=2 + 2*ceil( log(N) / log(t) ); f(k)=(1-t^k)/(1-t); la(j)=prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) ); nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) ); dn=sum(j=0, L, (-1)^j * la(j) ); gf=nm / dn; Vec( gf ) /* Joerg Arndt, Dec 27 2012 */
{a(n, k=2) = if( n<2 && k==2, n>=0, nMichael Somos, Dec 20 2016 */
A(3,1) = 13: [1/4,1/4,1/4,1/4], [1/2,1/4,1/8,1/8], [1/2,1/8,1/4,1/8], [1/2,1/8,1/8,1/4], [1/4,1/2,1/8,1/8], [1/4,1/8,1/2,1/8], [1/4,1/8,1/8,1/2], [1/8,1/2,1/4,1/8], [1/8,1/2,1/8,1/4], [1/8,1/4,1/2,1/8], [1/8,1/4,1/8,1/2], [1/8,1/8,1/2,1/4], [1/8,1/8,1/4,1/2]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 1, 3, 10, 35, 126, 462, ... 1, 13, 217, 4245, 90376, 2019836, ... 1, 75, 8317, 1239823, 216456376, 41175714454, ... 1, 525, 487630, 709097481, 1303699790001, 2713420774885145, ...
b:= proc(n, r, p, k) option remember; `if`(n`if`(k=0, 1, b(k*n+1, 1, 0, k+1)): seq(seq(A(n, d-n), n=0..d), d=0..10);
b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]]; A[n_, k_] := If[k == 0, 1, b[k*n + 1, 1, 0, k + 1]]; Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
{ a(n) = local(m=n+log(n+.5)\log(2), B=sum(k=0,m,x^(2^k)));if(n<0, 0, polcoeff((B+O(x^(2^m+n+1)))^(n+1),2^m+n)) }
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 26*x^4 + 106*x^5 + 816*x^6 +... A(x/G(x)) = G(x) = x/Series_Reversion[x*A(x)], where G(x) = 1 + x + x^2 + 17*x^4 + 408*x^6 + 69473*x^8 + 6018928*x^10 +... and G(x) appears to continue with only even powers of x (cf. A144692). The inverse binomial transform forms the g.f. of A202582: A(x/(1+x))/(1+x) = 1 + x^2 + 19*x^4 + 515*x^6 + 74383*x^8 + 6816465*x^10 +...+ A202582(n)*x^n +...
{ a(n) = local(m=n+log(n+.5)\log(2), B=sum(k=0,m,x^(2^k))); if(n<0, 0, polcoeff((B+O(x^(2^m+n+1)))^(n+1)/(n+1),2^m+n)) }
f[x_, n_] := (Sum[x^(2^k), {k, 0, n}])^n; Table[Coefficient[f[x, n], x^(2^n + n - 1)] , {n, 1, 20}] (* G. C. Greubel, Sep 22 2016 *)
a(n)=if(n<1,0,polcoeff(sum(j=0,n,x^(2^j)+O(x^(2^n+n)))^n,2^n+n-1))
{ a(n) = local( Q = sum(j=0,n,x^(3^j)+x^(2*3^j)) + O(x^(3^n+1)) ); polcoeff(Q^(n+1),3^n) }
{a(n,q=4)=local(Q=sum(j=0,n,(x^(q^j)-x^(q*q^j))/(1-x^(q^j)+O(x^(q^n+1)))));polcoeff(Q^(n+1),q^n)}
{a(n,q=5)=local(Q=sum(j=0,n,(x^(q^j)-x^(q*q^j))/(1-x^(q^j)+O(x^(q^n+1)))));polcoeff(Q^(n+1),q^n)}
Q:=proc(x,n) options operator, arrow: sum(x^(6^k)+x^(2*6^k)+x^(3*6^k)+x^(4*6^k)+x^(5*6^k),k=0..n) end proc: seq(coeff(Q(x,n)^(n+1),x,6^n),n=0..6); # Emeric Deutsch, Oct 20 2008
{a(n,q=6)=local(Q=sum(j=0,n,(x^(q^j)-x^(q*q^j))/(1-x^(q^j)+O(x^(q^n+1)))));polcoeff(Q^(n+1),q^n)}
Comments