A294752 Squarefree products of k primes that are symmetrically distributed around their average. Case k = 5.
53295, 119301, 229245, 399993, 608235, 623645, 1462731, 2324495, 3696189, 3973145, 4482879, 5356445, 5920971, 6249633, 7588977, 8270385, 10160943, 10450121, 10505373, 13185969, 13630011, 13760929, 14935029, 19095395, 20280795, 22566271, 23131549, 23408259, 24778401
Offset: 1
Keywords
Examples
53295 = 3*5*11*17*19. Prime factors average is (3 + 5 + 11 + 17 + 19)/5 = 11 and 3 + 8 = 11 = 19 - 8, 5 + 6 = 11 = 17 - 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..3560
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q,h) local a,b,k,n,ok; for n from 2*3*5*7*11 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2]; if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1; for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,5); # Alternative: N:= 10^8: # to get all terms <= N M:= floor((8*N/15)^(1/3)): P:= select(isprime, [seq(i,i=3..M,2)]): nP:= nops(P): Res:= NULL: for i3 from 3 to nP-2 do p3:= P[i3]; for i1 from 1 to i3-2 do if isprime(2*p3 - P[i1]) then for i2 from i1+1 to i3-1 do if isprime(2*p3 - P[i2]) then v:=P[i1]*P[i2]*p3*(2*p3-P[i2])*(2*p3-P[i1]); if v <= N then Res:= Res, v fi fi od fi od od: sort([Res]): # Robert Israel, Nov 10 2017
-
PARI
isok(n, nb=5) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ Michel Marcus, Nov 10 2017
Extensions
More terms from Giovanni Resta, Nov 09 2017
Missing term 23131549 inserted by Robert Israel, Nov 10 2017