A294834 Numerators of the partial sums of the reciprocals of the positive tetradecagonal numbers (k + 1)*(6*k + 1) = A051866(k+1).
1, 15, 599, 23035, 2900123, 30112021, 1117973277, 96393597197, 6084978910411, 67042215785861, 4094947551504521, 274661892011507657, 20068897076286721961, 1586702257063428405419, 26992510145660626515763, 54017546409271099350401, 5242487768036648180534897, 180077149085745155963315797
Offset: 0
Examples
The rationals V(6,1;n), n >= 0, begin: 1, 15/14, 599/546, 23035/20748, 2900123/2593500, 30112021/26799500, 1117973277/991581500, 96393597197/85276009000, 6084978910411/5372388567000, 67042215785861/59096274237000, 4094947551504521/3604872728457000, ... V(6,1;10^6) = 1.150982200 (Maple, 10 digits) to be compared with the ten digits 1.150982368 obtained from V(6,1) given in A275792.
References
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..600
- Eric Weisstein's World of Mathematics, Digamma Function
Programs
-
Magma
[Numerator((&+[1/((k + 1)*(6*k + 1)): k in [0..n]])): n in [0..50]]; // G. C. Greubel, Aug 30 2018
-
Mathematica
Table[Numerator[Sum[1/((k + 1)*(6*k + 1)), {k, 0, n}]], {n, 0, 50}] (* G. C. Greubel, Aug 30 2018 *)
-
PARI
a(n) = numerator(sum(k=0, n, 1/((k + 1)*(6*k + 1)))); \\ Michel Marcus, Nov 21 2017
Comments