cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294965 Denominators of the partial sums of the reciprocals of the numbers (k + 1)*(6*k + 5) = A049452(k+1).

Original entry on oeis.org

5, 110, 5610, 258060, 1496748, 17462060, 715944460, 67298779240, 32101517697480, 378797908830264, 24621864073967160, 1748152349251668360, 1748152349251668360, 145096644987888473880, 2582720280784414835064, 490716853349038818662160, 49562402188252920684878160
Offset: 0

Views

Author

Wolfdieter Lang, Nov 27 2017

Keywords

Comments

The corresponding numerators are given in A294964. There details are found.

Examples

			For the rationals V(6,5;n) see A294964.
		

Crossrefs

Programs

  • Maple
    map(denom,  ListTools:-PartialSums([seq(1/(k+1)/(6*k+5),k=0..20)])); # Robert Israel, Nov 29 2017
  • PARI
    a(n) = denominator(sum(k=0, n, 1/((k + 1)*(6*k + 5)))); \\ Michel Marcus, Nov 27 2017

Formula

a(n) = denominator(V(6,5;n)) with V(6,5;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 5)) = Sum_{k=0..n} 1/A049452(k+1) = Sum_{k=0..n} (1/(k + 5/6) - 1/(k + 1)).