cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A294964 Numerators of the partial sums of the reciprocals of the positive numbers (k + 1)*(6*k + 5) = A049452(k+1).

Original entry on oeis.org

1, 27, 1487, 71207, 423323, 5021921, 208393341, 19767960169, 9496615779853, 112702096556215, 7360072449683999, 524616965933727859, 526363371877036219, 43813027890740553917, 781806518388353706041, 148866078528885256002173, 15064339628673236669081953, 538212602352090865654383697
Offset: 0

Views

Author

Wolfdieter Lang, Nov 27 2017

Keywords

Comments

The corresponding denominators are given in A294965.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [6,5].
The limit of the series is V(6,5) = lim_{n -> oo} V(6,5;n) = . The value is (3/2)*log(3) + 2*log(2) - (1/2)*Pi*sqrt(3) = 0.3135137477... given in A294966.

Examples

			The rationals V(6,5;n), n >= 0, begin: 1/5, 27/110, 1487/5610, 71207/258060, 423323/1496748, 5021921/17462060, 208393341/715944460, 19767960169/67298779240, 9496615779853/32101517697480, ...
V(6,5;10^6) = 0.313513577 (Maple, 10 digits) to be compared with the rounded ten digits 0.3135137478 obtained from V(6,5) given in A294966.
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.

Crossrefs

Programs

  • Magma
    [Numerator((&+[1/((k+1)*(6*k+5)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018
  • Maple
    map(numer,  ListTools:-PartialSums([seq(1/(k+1)/(6*k+5),k=0..20)])); # Robert Israel, Nov 29 2017
  • Mathematica
    Table[Numerator[Sum[1/((k+1)*(6*k+5)), {k,0,n}]], {n,0,25}] (* G. C. Greubel, Aug 29 2018 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/((k + 1)*(6*k + 5)))); \\ Michel Marcus, Nov 27 2017
    

Formula

a(n) = numerator(V(6,5;n)) with V(6,5;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 5)) = Sum_{k=0..n} 1/A049452(k+1) = Sum_{k=0..n} (1/(k + 5/6) - 1/(k + 1)) = -Psi(5/6) + Psi(n+11/6) - (gamma + Psi(n+2)) with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.

A294966 Decimal expansion of the sum of the reciprocals of the numbers (k+1)*(6*k+5) = A049452(k+1) for k >= 0.

Original entry on oeis.org

3, 1, 3, 5, 1, 3, 7, 4, 7, 7, 7, 0, 7, 2, 8, 3, 8, 0, 0, 3, 6, 2, 1, 4, 7, 1, 1, 8, 3, 6, 9, 0, 8, 0, 9, 4, 6, 9, 6, 1, 3, 6, 7, 3, 3, 3, 1, 5, 5, 2, 3, 8, 2, 2, 4, 8, 8, 5, 7, 4, 1, 1, 6, 3, 6, 0, 8, 4, 3, 9, 1, 2, 0, 7, 7, 7, 7, 2, 0, 5, 5, 9, 9, 5, 9, 6, 2, 8, 0, 3, 8, 9, 5, 3, 4, 5, 2, 5, 4
Offset: 0

Views

Author

Wolfdieter Lang, Nov 27 2017

Keywords

Comments

In the Koecher reference v_6(5) = (1/6)*(present value V(6,5)) = 0.05225229129512..., given on p. 192 as (1/4)*log(3) + (1/3)*log(2) - Pi/(4*sqrt(3)).

Examples

			0.313513747770728380036214711836908094696136733315523822488574116360843...
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189-193.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (3/2)*Log(3) + 2*Log(2) - (1/2)*Pi(R)*Sqrt(3); // G. C. Greubel, Sep 05 2018
  • Mathematica
    RealDigits[-PolyGamma[0, 5/6] + PolyGamma[0, 1], 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)
  • PARI
    default(realprecision, 100); (3/2)*log(3) + 2*log(2) - (1/2)*Pi*sqrt(3) \\ G. C. Greubel, Sep 05 2018
    

Formula

Sum_{k>=0} 1/((6*n + 5)*(n + 1)) =: V(6,5) = (3/2)*log(3) + 2*log(2) - (1/2)*Pi*sqrt(3) = -Psi(5/6) + Psi(1) with the digamma function Psi and Psi(1) = -gamma = A001620.
The partial sums of this series are given in A294964/A294965.
Equals Sum_{k>=2} zeta(k)/6^(k-1). - Amiram Eldar, May 31 2021
Showing 1-2 of 2 results.