cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A295015 Squares whose largest digit is 5.

Original entry on oeis.org

25, 225, 1225, 1521, 2025, 2500, 3025, 4225, 5041, 11025, 12544, 13225, 21025, 22500, 24025, 34225, 35344, 42025, 44521, 52441, 55225, 112225, 122500, 133225, 135424, 150544, 151321, 152100, 202500, 212521, 235225, 245025, 250000, 251001, 252004, 255025, 302500
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Crossrefs

Cf. A295015 (square roots of the terms); A277946, A277947, A277948, A295016 .. A295019 (analog for digits 2 through 9); A295025 (analog for cubes).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Range[600]^2,Max[IntegerDigits[#]]==5&] (* Harvey P. Dale, Aug 19 2022 *)
  • PARI
    is_A295015(n)=issquare(n)&&n&&vecmax(digits(n))==5 \\ The "n&&" avoids an error message for n = 0.
    
  • Python
    from math import isqrt
    def aupto(limit):
      alst, rootlimit = [], isqrt(limit)
      for k in range(1, rootlimit+1):
        if max(str(k*k)) == "5": alst.append(k*k)
      return alst
    print(aupto(302500)) # Michael S. Branicky, May 15 2021

Formula

a(n) = A295005(n)^2.

A295021 Cubes whose largest digit is 6.

Original entry on oeis.org

64, 216, 15625, 46656, 50653, 64000, 132651, 216000, 262144, 456533, 614125, 636056, 1601613, 1643032, 2406104, 2515456, 3112136, 3652264, 6331625, 10360232, 13144256, 15625000, 41063625, 46656000, 50653000, 52313624, 55306341, 56623104, 64000000, 66430125, 100544625
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.

Examples

			64 is in the sequence because it is a cube, 64 = 4^3, and its largest digit is 6.
		

Crossrefs

Cf. A294996 (the corresponding cube roots); A278936, A294663, A295025, A295022, A295023, A295024 (same for digit 3 .. 9); A295016 (same for squares).
Cf. A000578 (the cubes).

Programs

  • Mathematica
    Select[Range[500]^3,Max[IntegerDigits[#]]==6&] (* Harvey P. Dale, Jun 21 2022 *)
  • PARI
    for(n=1,500, vecmax(digits(n^3))==6 &&print1(n^3,","))

Formula

a(n) = A294996(n)^3.

A295006 Numbers n such that the largest digit of n^2 is 6.

Original entry on oeis.org

4, 6, 8, 16, 19, 25, 34, 40, 46, 51, 56, 58, 60, 66, 68, 75, 79, 80, 81, 106, 108, 116, 119, 121, 125, 129, 142, 146, 156, 160, 162, 175, 190, 204, 206, 208, 215, 216, 225, 231, 238, 245, 246, 248, 249, 250, 251, 252, 254, 255, 256, 258, 325, 334, 340, 354, 355, 369, 375, 379
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Examples

			19 is in this sequence because 19^2 = 361 has 6 as largest digit.
		

Crossrefs

Cf. A295016 (the corresponding squares), A277959, A277960, A277961, A295005 .. A295009 (analog for digits 2 through 9), A294996 (analog for cubes).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Range[400],Max[IntegerDigits[#^2]]==6&] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    select( is_A295006(n)=n&&vecmax(digits(n^2))==6 , [0..999]) \\ The "n&&" avoids an error message for n=0.

Formula

a(n) = sqrt(A295016(n)), where sqrt = A000196 or A000194 or A003059.
Showing 1-3 of 3 results.