cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A294663 Cubes whose largest digit is 4.

Original entry on oeis.org

343, 314432, 343000, 34012224, 314432000, 343000000, 34012224000, 314432000000, 343000000000, 442102433032, 30304210142233, 34012224000000, 143121324002112, 314432000000000, 333014302331144, 343000000000000, 442102433032000, 30304210142233000, 34012224000000000
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. Primitive terms, i.e., not of this form (or equivalently: without trailing '0'), are 343, 314432, 34012224, 442102433032, 30304210142233, 143121324002112, 333014302331144, ...

Examples

			343 is in the sequence because it is a cube, 343 = 7^3, and its largest digit is 4.
		

Crossrefs

Cf. A294664 (the corresponding cubic roots).
Cf. A277948 = A277961^2 (analog for squares).
Cf. A278936, A295025, A295021, ..., A295024 (analog for digits 3, 5, 6, ..., 9).
Cf. A000578 (the cubes).

Programs

  • PARI
    for(n=1,2e8, vecmax(digits(n^3))==4&&print1(n^3,","))

Formula

a(n) = A294664(n)^3.

A294996 Numbers n such that the largest digit of n^3 is 6.

Original entry on oeis.org

4, 6, 25, 36, 37, 40, 51, 60, 64, 77, 85, 86, 117, 118, 134, 136, 146, 154, 185, 218, 236, 250, 345, 360, 370, 374, 381, 384, 400, 405, 465, 510, 585, 586, 587, 600, 606, 625, 640, 705, 770, 805, 806, 825, 845, 850, 860, 1011, 1021, 1045, 1046, 1081, 1101, 1124, 1136, 1145, 1146, 1170, 1177, 1180
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., without trailing '0'.
Includes a*10^k+b for k >= 3 and [a,b] in {[11, 1], [5, 4], [4, 5], [6, 5], [5, 6], [11, 10], [1, 11], [10, 11]}, and 8*10^k+8 for k >= 4. - Robert Israel, Jul 22 2019

Examples

			4 is in the sequence because the largest digit of 4^3 = 64 is 6.
		

Crossrefs

Cf. A295021 (the corresponding cubes); A278937, A294664, A294665, A294997 .. A294999 (same for digit 3, ..., 9); A295006 (same for squares).
Cf. A000578 (the cubes).

Programs

  • PARI
    for(n=1,2e3, vecmax(digits(n^3))==6&&print1(n","))

A295022 Cubes whose largest digit is 7.

Original entry on oeis.org

27, 2744, 3375, 12167, 17576, 27000, 157464, 166375, 175616, 250047, 274625, 300763, 474552, 753571, 1157625, 1367631, 1771561, 2000376, 2352637, 2460375, 2571353, 2744000, 3176523, 3375000, 4330747, 4657463, 4741632, 5177717, 5451776, 6644672, 7645373, 11543176, 12167000
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.

Examples

			27 is in the sequence because it is a cube, 27 = 3^3, and its largest digit is 7.
		

Crossrefs

Cf. A294997 (the corresponding cube roots); A278936, A294663, A295025, A295021, A295023, A295024 (same for digit 3 .. 9); A295017 (same for squares).
Cf. A000578 (the cubes).

Programs

  • PARI
    for(n=1,250, vecmax(digits(n^3))==7 &&print1(n^3,","))

Formula

a(n) = A294997(n)^3.

A295024 Cubes whose largest digit is 9.

Original entry on oeis.org

729, 2197, 4096, 4913, 6859, 9261, 19683, 21952, 24389, 29791, 35937, 39304, 59319, 68921, 79507, 91125, 97336, 110592, 117649, 185193, 195112, 205379, 226981, 287496, 328509, 357911, 389017, 438976, 493039, 592704, 704969, 729000, 912673, 941192, 970299, 1092727, 1191016
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.

Examples

			2197 is in the sequence because it is a cube, 2197 = 13^3, and its largest digit is 9.
		

Crossrefs

Cf. A294999 (the corresponding cube roots), A278936, A294663, A295025, A295021, A295022, A295023 (same for digit 3 .. 8), A295019 (same for squares).
Cf. A000578 (the cubes).

Programs

  • PARI
    for(n=1,150, vecmax(digits(n^3))==8 &&print1(n^3,","))

Formula

a(n) = A294999(n)^3.

A295016 Squares whose largest digit is 6.

Original entry on oeis.org

16, 36, 64, 256, 361, 625, 1156, 1600, 2116, 2601, 3136, 3364, 3600, 4356, 4624, 5625, 6241, 6400, 6561, 11236, 11664, 13456, 14161, 14641, 15625, 16641, 20164, 21316, 24336, 25600, 26244, 30625, 36100, 41616, 42436, 43264, 46225, 46656, 50625, 53361, 56644, 60025, 60516, 61504
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Crossrefs

Cf. A295006 (square roots of the terms); A277946, A277947, A277948, A295015 .. A295019 (analog for digits 2 through 9), A295021 (analog for cubes).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Range[250]^2,Max[IntegerDigits[#]]==6&] (* Harvey P. Dale, Jun 14 2025 *)
  • PARI
    is_A295016(n)=issquare(n)&&n&&vecmax(digits(n))==6 \\ The "n&&" avoids an error message for n = 0.

Formula

a(n) = A295006(n)^2.

A295023 Cubes whose largest digit is 8.

Original entry on oeis.org

8, 1728, 5832, 8000, 10648, 13824, 32768, 42875, 54872, 74088, 85184, 103823, 140608, 148877, 238328, 373248, 421875, 551368, 571787, 658503, 681472, 778688, 804357, 830584, 857375, 884736, 1061208, 1124864, 1481544, 1520875, 1728000, 1815848, 1860867, 2048383, 2628072, 2803221
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.

Examples

			8 is in the sequence because it is a cube, 8 = 2^3, and its largest digit is 8.
		

Crossrefs

Cf. A294998 (the corresponding cube roots), A278936, A294663, A295025, A295021, A295022, A295024 (same for digit 3 .. 9), A295018 (same for squares).
Cf. A000578 (the cubes).

Programs

  • PARI
    for(n=1,200, vecmax(digits(n^3))==8 &&print1(n^3,","))

Formula

a(n) = A294998(n)^3.
Showing 1-6 of 6 results.