cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A295021 Cubes whose largest digit is 6.

Original entry on oeis.org

64, 216, 15625, 46656, 50653, 64000, 132651, 216000, 262144, 456533, 614125, 636056, 1601613, 1643032, 2406104, 2515456, 3112136, 3652264, 6331625, 10360232, 13144256, 15625000, 41063625, 46656000, 50653000, 52313624, 55306341, 56623104, 64000000, 66430125, 100544625
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.

Examples

			64 is in the sequence because it is a cube, 64 = 4^3, and its largest digit is 6.
		

Crossrefs

Cf. A294996 (the corresponding cube roots); A278936, A294663, A295025, A295022, A295023, A295024 (same for digit 3 .. 9); A295016 (same for squares).
Cf. A000578 (the cubes).

Programs

  • Mathematica
    Select[Range[500]^3,Max[IntegerDigits[#]]==6&] (* Harvey P. Dale, Jun 21 2022 *)
  • PARI
    for(n=1,500, vecmax(digits(n^3))==6 &&print1(n^3,","))

Formula

a(n) = A294996(n)^3.

A295024 Cubes whose largest digit is 9.

Original entry on oeis.org

729, 2197, 4096, 4913, 6859, 9261, 19683, 21952, 24389, 29791, 35937, 39304, 59319, 68921, 79507, 91125, 97336, 110592, 117649, 185193, 195112, 205379, 226981, 287496, 328509, 357911, 389017, 438976, 493039, 592704, 704969, 729000, 912673, 941192, 970299, 1092727, 1191016
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.

Examples

			2197 is in the sequence because it is a cube, 2197 = 13^3, and its largest digit is 9.
		

Crossrefs

Cf. A294999 (the corresponding cube roots), A278936, A294663, A295025, A295021, A295022, A295023 (same for digit 3 .. 8), A295019 (same for squares).
Cf. A000578 (the cubes).

Programs

  • PARI
    for(n=1,150, vecmax(digits(n^3))==8 &&print1(n^3,","))

Formula

a(n) = A294999(n)^3.

A295023 Cubes whose largest digit is 8.

Original entry on oeis.org

8, 1728, 5832, 8000, 10648, 13824, 32768, 42875, 54872, 74088, 85184, 103823, 140608, 148877, 238328, 373248, 421875, 551368, 571787, 658503, 681472, 778688, 804357, 830584, 857375, 884736, 1061208, 1124864, 1481544, 1520875, 1728000, 1815848, 1860867, 2048383, 2628072, 2803221
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.

Examples

			8 is in the sequence because it is a cube, 8 = 2^3, and its largest digit is 8.
		

Crossrefs

Cf. A294998 (the corresponding cube roots), A278936, A294663, A295025, A295021, A295022, A295024 (same for digit 3 .. 9), A295018 (same for squares).
Cf. A000578 (the cubes).

Programs

  • PARI
    for(n=1,200, vecmax(digits(n^3))==8 &&print1(n^3,","))

Formula

a(n) = A294998(n)^3.

A294997 Numbers n such that the largest digit of n^3 is 7.

Original entry on oeis.org

3, 14, 15, 23, 26, 30, 54, 55, 56, 63, 65, 67, 78, 91, 105, 111, 121, 126, 133, 135, 137, 140, 147, 150, 163, 167, 168, 173, 176, 188, 197, 226, 230, 245, 256, 258, 260, 273, 276, 291, 293, 295, 300, 318, 321, 343, 346, 375, 376, 385, 386, 397, 415, 417, 418, 424, 425, 488, 497
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., without trailing '0'.

Examples

			3 is in the sequence because the largest digit of 3^3 = 27 is 7.
		

Crossrefs

Cf. A295022 (the corresponding cubes); A278937, A294664, A294665, A294996 .. A294999 (same for digit 3, ..., 9).
Cf. A000578 (the cubes).

Programs

  • Mathematica
    Select[Range[500],Max[IntegerDigits[#^3]]==7&] (* Harvey P. Dale, Sep 10 2019 *)
  • PARI
    for(n=1,2e3, vecmax(digits(n^3))==7&&print1(n","))

A295017 Squares whose largest digit is 7.

Original entry on oeis.org

576, 676, 1764, 2704, 3721, 4761, 5476, 5776, 6724, 7056, 7225, 7744, 15376, 17161, 17424, 20736, 23716, 27225, 27556, 30276, 32761, 35721, 37636, 47524, 50176, 51076, 54756, 57121, 57600, 67600, 70225, 70756, 72361, 73441, 75076, 75625, 76176, 101761, 106276, 126736, 137641, 141376
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Crossrefs

Cf. A295007 (square roots of the terms), A277946 .. A277948 (same for digit 2 .. 4), A295015 .. A295019 (same for digit 5 .. 9), A295022 (same for cubes).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Range[1000]^2,Max[IntegerDigits[#]]==7&] (* Harvey P. Dale, Dec 15 2024 *)
  • PARI
    is_A295017(n)=issquare(n)&&n&&vecmax(digits(n))==7 \\ The "n&&" avoids an error message for n=0.

Formula

a(n) = A295007(n)^2.
Showing 1-5 of 5 results.